HARVARD UNIVERSITY Graduate School of Arts and Sciences

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the

Committee on Biological Sciences in Public Health

have examined a dissertation entitled:

"Epigenetic profiles, asbestos burden, and survival in pleural mesothelioma"

presented by Brock Christensen

candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance.

Signature School of Public Health Typed name: Dr. Lester Kobzik, Harva B. Kome Signature no Typed name: Dr. Agnes B. Kane, Brown University Signature Typed name: Dr. Heather Nelson, University of Minnesota Cancer Center Signature Typed name: Dr. loseph Brain, Harvard School of Public Health (Chair)

Date: May 1, 2008

Epigenetic profiles, asbestos burden, and survival in pleural mesothelioma

A thesis presented

by

Brock Clarke Christensen

to

The Departments of Environmental Health and Genetics & Complex Diseases

In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological Sciences of Public Health

> Harvard University Cambridge, Massachusetts

> > May 2008

UMI Number: 3312317

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3312317 Copyright 2008 by ProQuest LLC. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 E. Eisenhower Parkway PO Box 1346 Ann Arbor, MI 48106-1346

© 2008 – Brock C. Christensen

All rights reserved

Epigenetic profiles, asbestos burden, and survival in pleural mesothelioma

Abstract

This thesis aimed to examine the relationships among aberrant epigenetic events, exposure to the carcinogenic mineral fiber asbestos, and patient outcomes in malignant pleural mesothelioma. Pleural mesothelioma is a rapidly fatal asbestos-associated malignancy with a median survival time of less than one year following diagnosis. Asbestos is the single most important contributor to the pathogenesis of pleural mesothelioma with approximately 80% of patients reporting a known exposure. First, the relationship between asbestos burden and survival in mesothelioma was examined using quantitative asbestos fiber burden measures in an effort to advance the understanding of the contribution of asbestos burden to disease prognosis. We found that lung tissue asbestos burden was a significant predictor of mesothelioma prognosis, and our data suggest that patient survival may be modified by susceptibility to this carcinogen. Next, an investigation of the relationship between epigenetic inactivation of six cell cycle control pathway genes and asbestos burden revealed that increasing asbestos burden was associated with an increased number of aberrant epigenetic silencing events, suggesting a novel tumorigenic mechanism of action of asbestos. Lastly, we aimed to clarify the relations among gene-locus specific methylation and tumor status,

asbestos burden, and disease survival with a comprehensive examination of aberrant epigenetic events at 1505 CpG loci associated with silencing of 803 cancer-related genes in pleural mesotheliomas and normal pleura. Classifying mesotheliomas and normal pleural samples based upon CpG methylation profile, we found that methylation profile classes differentiated tumor from normal pleura (P < 0.0001). In addition, examining tumors demonstrated that methylation profile class membership significantly predicts lung tissue asbestos burden (P < 0.03). Finally, we also found that both methylation class membership (P < 0.01), and asbestos burden (HR = 1.4, 95% CI, 1.1 - 1.8) were significant predictors of patient suvival in this disease. This work has demonstrated a role for asbestos as a significant contributor to aberrant epigenetic events in mesothelioma. Furthermore, this work has important clinical implications as we have shown that methylation profiles can differentiate diseased pleura from normal pleura, and that asbestos burden and methylation class membership are independent predictors of mesothelioma patient survival.

Table of contents

Chap	ter 1 – Introduction	1
	Thesis overview	2
	Mesothelioma presentation, diagnosis and treatment	3
	Mesothelioma incidence, latency, and survival	3
	Forms of asbestos	4
	Occupational and incidental asbestos exposure	5
	Environmental asbestos exposure	6
	Pathogenic mechanisms of asbestos	7
	Other exposures	8
	Genetic susceptibility	9
	Epigenetics	10
	DNA methylation	11
	DNA methylation in human cancer	12
	Methylation and exposures	12
	Methylation in MPM	14
	References	15
Chap	ter 2 – Asbestos burden predicts survival in pleural mesothelioma	22
	Abstract	24
	Introduction	25
	Materials and methods	26
	Results	27
	Discussion	34

References		
Chapter 3 – Asbestos exposure predicts cell cycle control gene promoter methylation in		
pleural mesothelioma40		
Abstract		
Introduction43		
Materials and methods46		
Results		
Discussion		
References		
Chapter 4 – Epigenetic profiles distinguish pleural mesothelioma from non-tumor		
pleura, predict patient asbestos burden, and survival		
Abstract		
Introduction		
Materials and methods68		
Results71		
Discussion79		
References		
Supplemental tables		
Chapter 5 – Discussion and directions 106		

vi

Chapter 1

Introduction

Thesis overview

Malignant pleural mesothelioma is a rapidly fatal asbestos-associated tumor of the parietal pleura. Although asbestos has been established as risk factor for this disease in the modern medical literature for almost a half-century, its pathogenic mechanisms remain incompletely characterized. The aims of this work were to enhance the understanding of the contributions of asbestos exposure and epigenetic alterations to pleural mesothelioma, as well as to evaluate their potential impact on patient survival. These research goals were approached using an incident case series of patients enrolled through the International Mesothelioma Program at Brigham and Women's Hospital in Boston Massachusetts, and had the advantage of a quantitative measure of asbestos burden for the majority of study subjects.

To begin, Chapter two reports on the contribution of patient asbestos fiber burden to pleural mesothelioma prognosis. Next, using a pathway-based, candidate-gene approach to study epigenetic inactivation of tumor suppressor genes, cell cycle control related genes were investigated for the potential correlation between methylation silencing of these genes and patient asbestos burden. In the final chapter of this thesis, additional cases as well as nontumor pleura samples were added to the study base, and the earlier candidate-gene work was expanded into a high-throughput study of epigenetic alterations in cancer-related genes. In this manner, epigenetic alteration profiles based on hundreds of CpG methylation measurements in each sample were generated. These epigenetic profiles were then used to explore the ability of aberrant methylation events to distinguish diseased pleura from nondiseased pleura. Finally, the relationships between profiles of epigenetic alteration and asbestos burden, as well as between these alterations and patient survival were investigated.

Mesothelioma presentation, diagnosis, and treatment

Mesothelioma is an asbestos-related tumor that arises from the mesothelial membranes surrounding the lungs, heart, and abdominal cavity. The parietal and visceral mesothelial membranes surrounding the lungs are collectively known as the pleura. Malignant pleural mesothelioma (MPM) affects the parietal pleura and is the most common form of mesothelioma, accounting for approximately 85% of cases (Robinson and Lake 2005). Patients suffering from MPM can present with any number of general symptoms; dull chest pain, dyspnea, cough, and / or weight loss and diagnosis can be difficult, especially in non-endemic regions (Antman 1980; Antman, Hassan et al. 2005; Scagliotti and Novello 2005). Although routine chest radiography will often reveal pleural effusion and occasional pleural masses evident of disease, histologic diagnosis is required to verify suspected MPM (differentiating MPM from lung adenocarcinoma, among other entities can be difficult) and to identify the tumor's histology which affects prognosis and, in some cases, treatment decisions (Boutin, Schlesser et al. 1998; Robinson and Lake 2005). Upon MPM diagnosis, aggressive therapy including surgery and chemotherapy has become the standard among eligible patients (Sugarbaker, Heher et al. 1991). Radical surgical approaches in treatment of this disease can include pleurectomy and decortication (P/D), and extrapleural pneumonectomy (EPP), and these are the most widely used treatments for MPM.

Mesothelioma incidence, latency, and survival

Approximately 1 in 100,000 people are diagnosed with MPM in The United States annually, incidence has been rising for thirty years (Antman, Hassan et al. 2005), and is not expected to peak until 2020 (Singhal and Kaiser 2002; Kukreja, Jaklitsch et al. 2004).

Startlingly, rates of mesothelioma in Europe are between 10 and 15 cases per 100,000,

several times that of the United States, and are not expected to peak until 2020 (Peto, Decarli et al. 1999; La Vecchia, Decarli et al. 2000). The single most important risk factor for MPM, asbestos exposure, is known (primarily as a result of epidemiologic studies employing patient self-reports of occupational and environmental history) to occur in 70-80% or more of MPM patients (Tammilehto, Maasilta et al. 1992). Although asbestos use has been declining in the United States and Europe for decades, the 20-50 year latency of MPM is responsible for the continued worldwide increasing disease incidence. In contrast to the long latency period following asbestos exposure, MPM is a rapidly fatal cancer with a median survival time of less than one year upon diagnosis (Robinson and Lake 2005). Further influencing survival is disease histology; patients with biphasic and sarcomatoid tumors have reduced survival compared to patients with epithelioid tumors (Flores, Pass et al. 2008). Importantly, since asbestos exposure is often occupationally related, and men are more often employed in these positions, disease occurs three to five times more often in men than women (McDonald and McDonald 1980). The burden of both exposure and disease is heavier among men. Further, men are significantly more likely to have reduced survival compared to women with MPM (Spirtas, Connelly et al. 1988). Hence, while asbestos exposure burden could influence disease outcome, the relationship between asbestos exposure patterns and prognosis has been very poorly studied and is incompletely understood.

Forms of asbestos

Asbestos is a group of crystalline-hydrated silicate minerals that occur in a naturally fibrous form. Derived from the Greek word for inextinguishable, asbestos was used centuries

ago as a textile for clothing, and in oil lamp wicks (Cugell and Kamp 2004). There are two main groups of asbestos fibers; serpentine asbestos, also known as chrysotile, is comprised of shorter, curved fibers; and amphiboles, which are long and straight and have several forms such as crocidolite, amosite, anthophylite, tremolite, and actinolite. Although those who have studied mesothelioma have formed a general consensus that amphibole fibers are more pathogenic than serpentine fibers, evidence indicates that all types of asbestos fibers are carcinogenic (Godleski 2004). Inhalation of asbestos fibers leads to deposition at alveolar duct bifurcations and eventual migration to the pleural membranes (Brody, Hill et al. 1981; Viallat, Raybuad et al. 1986). Unfortunately, the process of fiber translocation is not well understood, but redistribution through airspaces, tissue spaces, or travel via lymphatics are among popular hypotheses (Nishimura and Broaddus 1998).

Occupational and incidental asbestos exposure

The original identification of asbestos-related disease leading to death was made over one hundred years ago by Dr. Montague Murray in a case of asbestosis (Tweedale and Hansen 1998). It was not until 1931 that the first case of MPM was reported in the literature, and not until a study of South-African miners in 1960 that the link between asbestos and MPM was confirmed (Klemperer P 1931; Wagner, Sleggs et al. 1960). Historically, most asbestos exposure is occupationally related and affects individuals who mine, manufacture, or apply asbestos containing products, including shipbuilders, construction workers, and auto mechanics (McDonald and McDonald 1980). In addition, paraoccupational exposure of family members of asbestos workers may lead to higher burdens of asbestos exposure compared to the general population, and potentially increased risk of developing MPM.

The devastating prognosis of pleural mesothelioma is accompanied by an incredible economic burden for both medical care and the litigation aimed at establishing liability for the consequences of asbestos exposure, estimated to be in excess of \$265 billion over the next four decades in the United States (Bhagavatula, Moody et al. 2001). While asbestos use has been declining since the 1970s in the U.S. and in Europe due to some regulatory action controlling asbestos use, vast quantities of asbestos continue to be mined and exported throughout the world, and use is heavy in developing nations such as China, India, and Central America (Joshi and Gupta 2004; Kazan-Allen 2005). Although asbestos-containing insulation products were banned in the United States in 1972, other asbestos-containing products are still imported and are among multiple remaining asbestos exposure hazards, many being old products that remain in place. Removal of asbestos-containing insulation put in place prior to the 1972 ban can be costly to remove, and is often left in place unless extensive renovations or planed demolitions are being undertaken. Therefore, there remain significant sources of asbestos in the environment, and thus substantial risk for exposures, such as that observed in the dust from the World Trade Center towers collapse in New York City (Landrigan, Lioy et al. 2004).

Environmental asbestos exposure

In addition to incidental and occupational exposures to asbestos, there are also environmental exposures and other pathogenic mineral fibers. A common type of environmental exposure occurs when dust from surface soils containing mineral fibers are inhaled. Certain geographic locales, such as Afghanistan, Australia, Finland, Greece and Turkey are known to harbor naturally occurring surface amphibole fibers that can generate

significant exposures for residents (Noro 1968; Constantopoulos, Theodoracopoulos et al. 1991; Voisin, Marin et al. 1994; Dumortier, Gocmen et al. 2001). Examples of environmental exposures to asbestos that may not be readily apparent include talc products or talc mine tailings. Veins of mineral asbestos can occur coincident with talc deposits and depending on the geographic origin of the talc, asbestos may comprise a significant percentage of talc (Scancarello, Romeo et al. 1996). Another recent example of asbestos fiber contaminated mining deposits is the vermiculite mine in Libby Montana. In Libby, exposure to amphibole fiber contaminated vermiculite deposits has been associated with an increased risk for asbestos associated diseases (Sullivan 2007). Further, taconite mine tailings that were dumped into Lake Superior near Duluth Minnesota have resulted in the exposure of Duluth residents to high levels of amphibole asbestos fibers in their drinking water, and have put these individuals at a significantly increased risk of peritoneal mesothelioma (Sigurdson 1983). This situation has resulted in public controversy that continues and efforts are underway in 2008 by the state of Minnesota legislature to begin another study of the association of taconite mining with increasing incidence of MPM in the state (Safety 2007).

Pathogenic mechanisms of asbestos

The carcinogenic mechanisms of action of asbestos remain incompletely characterized. However, *in vitro* work has demonstrated the cytotoxic and clastogenic effects of asbestos fibers (Kelsey, Yano et al. 1986; Goodglick and Kane 1990; Jaurand 1997). In addition, attempted phagocytosis of fibers by macrophages and oxido-reduction reactions on fiber surfaces are known to generate reactive oxygen species (ROS) which are capable of inducing DNA damage (Wang, Jaurand et al. 1987). In mesothelial cell cultures, asbestos

fibers cause cell cycle arrest, and can activate TP53 as well as upregulate proto-oncogenes c-Fos and c-Jun, and transcription factor NFKB (Levresse, Renier et al. 1997). Importantly, animal models of mesothelioma have been very helpful in advancing the understanding of the pathogenic mechanisms of asbestos, revealing that heterozygosity at particular genes such as NF2 and the CDKN2 locus can accelerate the induction of disease in the context of asbestos exposure (Kane 2006). Asbestos fibers have also been shown to damage chromosomes and alter mitosis by interfering with chromosome segregation (Yegles, Saint-Etienne et al. 1993). Specific regions of chromosome deletion often described in MPM include 1p22, 1p36, 3p21, 6q, 9p21, 15q11.1-15, and 22q (Lu, Jhanwar et al. 1994; Huncharek 1995; Xio, Li et al. 1995; Bell, Jhanwar et al. 1997; Bjorkqvist, Tammilehto et al. 1997; Balsara, Bell et al. 1999; Murthy and Testa 1999; Whitaker 2000). Finally, there is rapidly emerging literature suggesting that asbestos may participate in the induction of epigenetic tumor suppressor gene silencing via promoter CpG hypermethylation in MPM (Ohta, Shridhar et al. 1999; Murthy, Shen et al. 2000; Toyooka, Pass et al. 2001; Hirao, Bueno et al. 2002; Toyooka, Carbone et al. 2002; Wong, Zhou et al. 2002; Lee, He et al. 2004; Shivapurkar, Toyooka et al. 2004; He, Lee et al. 2005; Shigematsu, Suzuki et al. 2005; Suzuki, Toyooka et al. 2005; Tsou, Shen et al. 2005).

Other exposures

Although some mesothelioma patients may not have a *known* exposure to asbestos, they may not be truly unexposed, or may have developed the disease due to a different exposure, such as ionizing radiation, given some reports of sporadic MPM following radiotherapy (Cavazza, Travis et al. 1996). There has also been intense debate surrounding

the potential role of simian virus 40 (SV40) infection in MPM pathogenesis. The early region of the virus encodes large T antigen (Tag) which is known to bind and inactivate p53 and Rb. SV40 DNA, RNA, or protein have been found in human mesotheliomas in multiple labs all over the world and more is known about the pathogenic role of SV40 in mesothelioma than any other tumor type (Gazdar, Butel et al. 2002; Pass, Bocchetta et al. 2004). Further, in a mouse model of mesothelioma, SV40 oncoprotiens have been shown to increase asbestosinduced double-strand DNA breaks, and prevent mesothelial cell senescence (Pietruska and Kane 2007). However, others maintain that SV40 is not a significant contributing factor to mesothelioma pathogenesis as multiple studies have detected SV40 as often in normal lung samples and negative controls as in mesotheliomas (Shah 2004). Continuing research into the molecular-genetic consequences of asbestos exposure is imperative in order to improve our understanding of its mechanism of action in inducing MPM.

Genetic susceptibility

The rare incidence of mesothelioma, despite widespread exposures to asbestos, particularly environmental exposures in some parts of the globe, suggests that genetic susceptibility may contribute to MPM risk. Interestingly, despite widespread exposure to the asbestiform mineral fiber erionite in certain Turkish villages, close examination of MPM incidence revealed that risk appeared to be inherited (Carbone, Kratzke et al. 2002). Also, previous studies have shown that parental history of MPM is a possible contributor to an individual's risk of developing mesothelioma (Heineman, Bernstein et al. 1996; Huncharek, Kelsey et al. 1996). In fact, a wealth of evidence supporting a potential genetic susceptibility component to this disease has been collected (Li, Lokich et al. 1978; Risberg, Nickels et al.

1980; Martensson, Larsson et al. 1984; Lynch, Katz et al. 1985; Hammar, Bockus et al. 1989; Otte, Sigsgaard et al. 1990; Precerutti, Mayorga et al. 1990; Dawson, Gibbs et al. 1992; Ascoli, Scalzo et al. 1998). A more recent genetic epidemiologic study of MPM in Turkey, residents of homes where interiors were painted with a whitewash containing zeolite had endemic mesothelioma (Roushdy-Hammady, Siegel et al. 2001). These authors assembled and analyzed three-generation pedigrees that strongly suggest vertical transmission of mesothelioma in a setting where exposure to erionite is ubiquitous. These results are consistent with a report of familial mesothelioma following residential asbestos exposure (Li, Lokich et al. 1978), and with the reports of malignant mesothelioma in two pairs of siblings reported by Martensson et al in 1984 (Martensson, Larsson et al. 1984).

Epigenetics

Epigenetics is the study of heritable changes in gene function that cannot be explained by changes in DNA sequence (Russo 1996). While every cell in an individual human has the same genetic sequence, epigenetic marks are critical regulators of development and cellular fate determination. At the chromatin level, post-translational modification of specific histone lysine residues is critical to the control of gene transcription and is considered a mode of epigenetic regulation. Lysine residues of histone proteins are subject to methylation, and specifically, methylation of histone K9, and lack of K4 methylation promote a heterochromatic conformation of highly condensed nucleosomes (Nguyen, Weisenberger et al. 2002). Similar to, and associated with histone deacetylation, histone lysine methylation results in compacted DNA that prevents access of transcription factors and the transcription initiation complex to DNA, stably silencing gene expression.

Associated with these repressive epigenetic marks and higher-order nucleosome structure is DNA cytosine methylation, the most commonly studied mechanism of epigenetic silencing.

DNA methylation

Cytosine methylation occurs in the context of a CpG dinucleotide, and concentrations of CpGs known as CpG islands when sufficiently methylated, are associated with transcriptional gene silencing tantamount to "one hit" as part of Knudson's two hit hypothesis of carcinogenesis (Knudson 2000). Promoter CpG hypermethylation induced gene silencing is a functional inactivation akin to a protein truncating mutation, a mutation that introduces a stop codon, or gene deletion. Although CpG dinucleotides are underrepresented in the human genome, CpG islands often occur in gene promoter regions, (Bird 2002) and about half of human genes have a promoter CpG island. It is thought that under normal conditions these CpG islands are largely maintained in an unmethylated state permissive to transcription (Jones and Baylin 2002). However, the catalytic addition of a methyl group to cytosine by de novo DNA methylatransferase enzymes DNMT3a and DNMT3b causes methylcytosine binding proteins to be recruited and form complexes with histone deacetylases resulting in hypoacetylated histones and highly compacted nucleosomes (Jones and Baylin 2002). The secondary structure of DNA is then inaccessible to transcription activation complexes and the gene downstream of the hypermethylated CpG island is transcriptionally silenced.

DNA methylation in human cancer

DNA methylation associated gene silencing is a well recognized mechanism of epigenetic gene silencing that often occurs at tumor suppressor gene (TSG) loci in human cancer. Hundreds of reports of methylation induced silencing at TSGs in virtually all types of human cancer have been published (Jones and Baylin 2002; Baylin 2006). In contrast to hypermethylated promoter regions, the original link between methylation and cancer was a report of global hypomethylation in cancer cells compared to normal (Feinberg and Vogelstein 1983). Global hypomethylation is the result of loss of methylation of retrotransposons such as long interspersed nuclear elements (LINES) and short interspersed nuclear elements (SINES) such as Alu repeats. Loss of methylation at these regions, which are largely methylated in normal cells, contributes to increased genomic instability (Yoder, Walsh et al. 1997) and may activate transcription of oncogenic genes and non-coding RNAs. As mentioned previously, instances of local promoter hypermethylation induced gene silencing are important contributors to tumorigenesis, though specifically how genes are targeted for *de novo* methylation is not known.

Methylation and exposures

Interestingly, although monozygotic twins are genetically identical, they can have phenotypic differences that may be explained by differences in epigenetic profiles (Fraga, Ballestar et al. 2005). In fact, older monozygotic twins have been shown to exhibit overall content and distribution variations in methylated cytosine greater than the variations seen among younger twin pairs (Fraga, Ballestar et al. 2005). Thus, differences in environment may influence the disparate methylation profiles in twin pairs (and all humans) as varying

exposures are accumulated throughout life. Therefore, in addition to being heritable, epigenetic alterations are almost certainly influenced by an individual's environment.

In fact, exposures to carcinogens have been linked to TSG methylation silencing events in several types of human cancer. Hypermethylation of *RASSF1* in lung cancer is associated with a history of starting to smoke at a younger age (Marsit, Kim et al. 2005), while hypermethylation of CDKN2A, encoding p16INK4a has been associated with increasing dose of tobacco smoke (Kim DH, et al Cancer Res 2001 & Toyooka S et al Int J Cancer 2003). In bladder cancer cigarette smoking is significantly associated with methylation induced inactivation of CDKN2A (Marsit, Karagas et al. 2006). Additionally, arsenic exposure is another carcinogen that has been associated with TSG methylation in bladder cancer, at RASSF1 and PRSS3 (Marsit, Karagas et al. 2006). Alcohol consumption, HPV16 infection and smoking status have been associated with methylation inactivation of the SFRP family of Wnt antagonists in head and neck cancer (Marsit, McClean et al. 2006). A final example from bladder cancer that models the association between promoter methylation measurements at 16 TSGs and exposure variables revealed that smoking was significantly associated with an increased propensity to methylate at these loci (Marsit, Houseman et al. 2007). This same report also reported a significantly increased risk of death among bladder cancer patients with an increased propensity to methylate at these 16 TSG loci, indicating the potential contribution of exposure-related methylation events to patient outcome (Marsit, Houseman et al. 2007).

Methylation in MPM

Although more extensively studied in other exposure related solid tumors, rapidly emerging literature implicates methylation induced silencing of TSGs as an important contributor to MPM. In 2001, Tokooya et al. reported on differential methylation profiles of seven TSGs in malignant mesothelioma versus lung adenocarcinoma, in part, attempting to establish markers of diagnosis for distinguishing these tumors (Toyooka, Pass et al. 2001). These authors assessed 66 mesotheliomas and 40 lung adenocarcinomas for methylation at RASSF1A, RARB, CDH13, GSTP1, MGMT, CDNK2A, and APC and found significantly lower levels of methylation in mesotheliomas at all TSG loci except RASSF1A and GSTP1 (Toyooka, Pass et al. 2001). More recently, the same group reported a prevalence of methylation of SCGB3A1 in mesothelioma of 40% (Shigematsu, Suzuki et al. 2005). In addition, other authors have shown that methylation of PYCARD or HIC1, predicts poor survival in a case series of 50 MPM patients (Suzuki, Toyooka et al. 2005). A study of the methylation induced silencing of the Secreted Frizzled Related Proteins (SFRP) family in MPM, has demonstrated that these genes are frequently methylated in this disease (Lee, He et al. 2004; He, Lee et al. 2005). Finally, in an investigation of TSG promoter methylation in a case series of 52 MPMs, Tsou et al. reported independent associations between methylation at MT1A and MT2A and patient-reported exposure to asbestos, making an important link between asbestos exposure and epigenetic gene inactivation in MPM (Tsou, Galler et al. 2007).

References

- Antman, K., R. Hassan, et al. (2005). "Update on malignant mesothelioma." <u>Oncology</u> (Williston Park) **19**(10): 1301-9; discussion 1309-10, 1313-6.
- Antman, K. H. (1980). "Current concepts: malignant mesothelioma." <u>N Engl J Med</u> 303(4): 200-2.
- Ascoli, V., C. C. Scalzo, et al. (1998). "Familial pleural malignant mesothelioma: clustering in three sisters and one cousin." <u>Cancer Lett</u> **130**(1-2): 203-7.
- Balsara, B. R., D. W. Bell, et al. (1999). "Comparative genomic hybridization and loss of heterozygosity analyses identify a common region of deletion at 15q11.1-15 in human malignant mesothelioma." <u>Cancer Res</u> 59(2): 450-4.
- Baylin, S. B., Ohm, J.E. (2006). "Epigenetic gene silencing in cancer a mechanism for early oncogenic pathway addiction?" Nat Rev Cancer 6: 107-116.
- Bell, D. W., S. C. Jhanwar, et al. (1997). "Multiple regions of allelic loss from chromosome arm 6q in malignant mesothelioma." <u>Cancer Res</u> 57(18): 4057-62.
- Bhagavatula, R., R. Moody, et al. (2001). "Asbestos: a moving target." <u>Best's Review</u> 102(5): 85-90.
- Bird, A. (2002). "DNA methylation patterns and epigenetic memory." <u>Genes Dev</u> 16(1): 6-21.
- Bjorkqvist, A. M., L. Tammilehto, et al. (1997). "Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma." <u>Br J Cancer</u> 75(4): 523-7.
- Boutin, C., M. Schlesser, et al. (1998). "Malignant pleural mesothelioma." <u>Eur Respir J</u> 12(4): 972-81.
- Brody, A. R., L. H. Hill, et al. (1981). "Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages." <u>Am Rev</u> <u>Respir Dis</u> **123**(6): 670-9.
- Carbone, M., R. A. Kratzke, et al. (2002). "The pathogenesis of mesothelioma." <u>Semin Oncol</u> **29**(1): 2-17.
- Cavazza, A., L. B. Travis, et al. (1996). "Post-irradiation malignant mesothelioma." Cancer 77(7): 1379-85.
- Constantopoulos, S. H., P. Theodoracopoulos, et al. (1991). "Metsovo lung outside Metsovo. Endemic pleural calcifications in the ophiolite belts of Greece." <u>Chest</u> **99**(5): 1158-61.

- Cugell, D. W. and D. W. Kamp (2004). "Asbestos and the pleura: a review." <u>Chest</u> **125**(3): 1103-17.
- Dawson, A., A. Gibbs, et al. (1992). "Familial mesothelioma. Details of 17 cases with histopathologic findings and mineral analysis." <u>Cancer</u> **70**(5): 1183-7.
- Dumortier, P., A. Gocmen, et al. (2001). "The role of environmental and occupational exposures in Turkish immigrants with fibre-related disease." Eur Respir J 17(5): 922-7.
- Feinberg, A. P. and B. Vogelstein (1983). "Hypomethylation distinguishes genes of some human cancers from their normal counterparts." <u>Nature</u> **301**(5895): 89-92.
- Flores, R. M., H. I. Pass, et al. (2008). "Extrapleural pneumonectomy versus pleurectomy/decortication in the surgical management of malignant pleural mesothelioma: results in 663 patients." <u>J Thorac Cardiovasc Surg</u> 135(3): 620-6, 626 e1-3.
- Fraga, M. F., E. Ballestar, et al. (2005). "Epigenetic differences arise during the lifetime of monozygotic twins." Proc Natl Acad Sci U S A 102(30): 10604-9.
- Gazdar, A. F., J. S. Butel, et al. (2002). "SV40 and human tumours: myth, association or causality?" <u>Nat Rev Cancer</u> 2(12): 957-64.
- Godleski, J. J. (2004). "Role of asbestos in etiology of malignant pleural mesothelioma." <u>Thorac Surg Clin</u> 14(4): 479-87.
- Goodglick, L. A. and A. B. Kane (1990). "Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo." <u>Cancer Res</u> **50**(16): 5153-63.
- Hammar, S. P., D. Bockus, et al. (1989). "Familial mesothelioma: a report of two families." <u>Hum Pathol</u> 20(2): 107-12.
- He, B., A. Y. Lee, et al. (2005). "Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells." <u>Cancer Res</u> **65**(3): 743-8.
- Heineman, E. F., L. Bernstein, et al. (1996). "Mesothelioma, asbestos, and reported history of cancer in first-degree relatives." <u>Cancer</u> 77(3): 549-54.
- Hirao, T., R. Bueno, et al. (2002). "Alterations of the p16(INK4) locus in human malignant mesothelial tumors." <u>Carcinogenesis</u> 23(7): 1127-30.
- Huncharek, M. (1995). "Genetic factors in the aetiology of malignant mesothelioma." <u>Eur J</u> <u>Cancer</u> **31A**(11): 1741-7.
- Huncharek, M., K. Kelsey, et al. (1996). "Parental cancer and genetic predisposition in malignant pleural mesothelioma: a case-control study." <u>Cancer Lett</u> **102**(1-2): 205-8.

- Jaurand, M. C. (1997). "Mechanisms of fiber-induced genotoxicity." <u>Environ Health Perspect</u> 105 Suppl 5: 1073-84.
- Jones, P. A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in cancer." <u>Nat Rev Genet</u> 3(6): 415-28.
- Joshi, T. K. and R. K. Gupta (2004). "Asbestos in developing countries: magnitude of risk and its practical implications." Int J Occup Med Environ Health 17(1): 179-85.
- Kane, A. B. (2006). "Animal models of malignant mesothelioma." <u>Inhal Toxicol</u> 18(12): 1001-4.
- Kazan-Allen, L. (2005). "Asbestos and mesothelioma: worldwide trends." Lung Cancer 49 Suppl 1: S3-8.
- Kelsey, K. T., E. Yano, et al. (1986). "The in vitro genetic effects of fibrous erionite and crocidolite asbestos." <u>Br J Cancer</u> 54(1): 107-14.
- Klemperer P, R. C. (1931). "Primary neoplasms of the pleura: a report of five cases." <u>Arch</u> <u>Pathol</u> 11: 385-412.
- Knudson, A. G. (2000). "Chasing the cancer demon." Annu Rev Genet 34: 1-19.
- Kukreja, J., M. T. Jaklitsch, et al. (2004). "Malignant pleural mesothelioma: overview of the North American and European experience." <u>Thorac Surg Clin</u> 14(4): 435-45.
- La Vecchia, C., A. Decarli, et al. (2000). "An age, period and cohort analysis of pleural cancer mortality in Europe." <u>Eur J Cancer Prev</u> 9(3): 179-84.
- Landrigan, P. J., P. J. Lioy, et al. (2004). "Health and environmental consequences of the world trade center disaster." <u>Environ Health Perspect</u> **112**(6): 731-9.
- Lee, A. Y., B. He, et al. (2004). "Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma." <u>Oncogene</u> 23(39): 6672-6.
- Levresse, V., A. Renier, et al. (1997). "Analysis of cell cycle disruptions in cultures of rat pleural mesothelial cells exposed to asbestos fibers." <u>Am J Respir Cell Mol Biol</u> 17(6): 660-71.
- Li, F., J. Lokich, et al. (1978). "Familial mesothelioma after intense asbestos exposure at home." Journal of the American Medial Association **240**: 467.
- Lu, Y. Y., S. C. Jhanwar, et al. (1994). "Deletion mapping of the short arm of chromosome 3 in human malignant mesothelioma." <u>Genes Chromosomes Cancer</u> 9(1): 76-80.
- Lynch, H. T., D. Katz, et al. (1985). "Familial mesothelioma: review and family study." <u>Cancer Genet Cytogenet</u> 15(1-2): 25-35.

- Marsit, C. J., E. A. Houseman, et al. (2007). "Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer." <u>Carcinogenesis</u> **28**(8): 1745-51.
- Marsit, C. J., M. R. Karagas, et al. (2006). "Carcinogen exposure and gene promoter hypermethylation in bladder cancer." <u>Carcinogenesis</u> 27(1): 112-6.
- Marsit, C. J., D. H. Kim, et al. (2005). "Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence." Int J Cancer 114(2): 219-23.
- Marsit, C. J., M. D. McClean, et al. (2006). "Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma." Int J Cancer 119(8): 1761-6.
- Martensson, G., S. Larsson, et al. (1984). "Malignant mesothelioma in two pairs of siblings: is there a hereditary predisposing factor?" <u>Eur J Respir Dis</u> 65(3): 179-84.
- McDonald, A. D. and J. C. McDonald (1980). "Malignant mesothelioma in North America." <u>Cancer</u> 46(7): 1650-6.
- Murthy, S. S., T. Shen, et al. (2000). "Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma." Oncogene 19(3): 410-6.
- Murthy, S. S. and J. R. Testa (1999). "Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma." J Cell Physiol **180**(2): 150-7.
- Nguyen, C. T., D. J. Weisenberger, et al. (2002). "Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine." <u>Cancer Res</u> **62**(22): 6456-61.
- Nishimura, S. L. and V. C. Broaddus (1998). "Asbestos-induced pleural disease." <u>Clin Chest</u> <u>Med</u> 19(2): 311-29.
- Noro, L. (1968). "Occupational and "non-occupational" asbestosis in Finland." <u>Am Ind Hyg</u> <u>Assoc J</u> 29(3): 195-201.
- Ohta, Y., V. Shridhar, et al. (1999). "Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma." <u>Cancer</u> **85**(12): 2570-6.
- Otte, K. E., T. I. Sigsgaard, et al. (1990). "Malignant mesothelioma: clustering in a family producing asbestos cement in their home." <u>Br J Ind Med</u> 47(1): 10-3.
- Pass, H. I., M. Bocchetta, et al. (2004). "Evidence of an important role for SV40 in mesothelioma." <u>Thorac Surg Clin</u> 14(4): 489-95.

- Peto, J., A. Decarli, et al. (1999). "The European mesothelioma epidemic." <u>Br J Cancer</u> **79**(3-4): 666-72.
- Pietruska, J. R. and A. B. Kane (2007). "SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells." <u>Cancer</u> <u>Res</u> 67(8): 3637-45.
- Precerutti, J. A., M. Mayorga, et al. (1990). "Is there a "genetic model" in the genesis of malignant pleural mesothelioma?" <u>Hum Pathol</u> 21(9): 983.
- Risberg, B., J. Nickels, et al. (1980). "Familial clustering of malignant mesothelioma." <u>Cancer</u> **45**(9): 2422-7.
- Robinson, B. W. and R. A. Lake (2005). "Advances in malignant mesothelioma." <u>N Engl J</u> <u>Med</u> **353**(15): 1591-603.
- Roushdy-Hammady, I., J. Siegel, et al. (2001). "Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey." Lancet 357(9254): 444-5.
- Russo, V., Martienssen, RA, Riggs, AD. (1996). "Epigenetic mechanisms of gene regulation." <u>Cold Spring Harbor Laboratory Press</u>.
- Safety, C. f. O. H. a. (2007). Mesothelioma in Northeastern Minnestoa and Two Occupational Cohorts: 2007 Update. St. Paul Minnesota Department of Health.
- Scagliotti, G. V. and S. Novello (2005). "State of the art in mesothelioma." <u>Ann Oncol</u> 16 Suppl 2: ii240-5.
- Scancarello, G., R. Romeo, et al. (1996). "Respiratory disease as a result of talc inhalation." J Occup Environ Med **38**(6): 610-4.
- Shah, K. V. (2004). "Causality of mesothelioma: SV40 question." <u>Thorac Surg Clin</u> 14(4): 497-504.
- Shigematsu, H., M. Suzuki, et al. (2005). "Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies." Int J Cancer 113(4): 600-4.
- Shivapurkar, N., S. Toyooka, et al. (2004). "Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types." Int J Cancer 109(5): 786-92.
- Sigurdson, E. E. (1983). "Observations of cancer incidence surveillance in Duluth, Minnesota." <u>Environ Health Perspect</u> **53**: 61-7.
- Singhal, S. and L. R. Kaiser (2002). "Malignant mesothelioma: options for management." Surg Clin North Am 82(4): 797-831.
- Spirtas, R., R. R. Connelly, et al. (1988). "Survival patterns for malignant mesothelioma: the SEER experience." Int J Cancer 41(4): 525-30.

- Sugarbaker, D. J., E. C. Heher, et al. (1991). "Extrapleural pneumonectomy, chemotherapy, and radiotherapy in the treatment of diffuse malignant pleural mesothelioma." <u>J</u> <u>Thorac Cardiovasc Surg 102(1)</u>: 10-4; discussion 14-5.
- Sullivan, P. A. (2007). "Vermiculite, respiratory disease, and asbestos exposure in Libby, Montana: update of a cohort mortality study." <u>Environ Health Perspect</u> 115(4): 579-85.
- Suzuki, M., S. Toyooka, et al. (2005). "Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection." <u>Oncogene</u> **24**(7): 1302-8.
- Tammilehto, L., P. Maasilta, et al. (1992). "Diagnosis and prognostic factors in malignant pleural mesothelioma: a retrospective analysis of sixty-five patients." <u>Respiration</u> 59(3): 129-35.
- Toyooka, S., M. Carbone, et al. (2002). "Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells." <u>Oncogene</u> **21**(27): 4340-4.
- Toyooka, S., H. I. Pass, et al. (2001). "Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma." <u>Cancer Res</u> **61**(15): 5727-30.
- Tsou, J. A., J. S. Galler, et al. (2007). "DNA methylation profile of 28 potential marker loci in malignant mesothelioma." <u>Lung Cancer</u>.
- Tsou, J. A., L. Y. Shen, et al. (2005). "Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung." <u>Lung Cancer</u> 47(2): 193-204.
- Tweedale, G. and P. Hansen (1998). "Protecting the workers: the medical board and the asbestos industry, 1930s-1960s." Med Hist 42(4): 439-57.
- Viallat, J. R., F. Raybuad, et al. (1986). "Pleural migration of chrysotile fibers after intratracheal injection in rats." <u>Arch Environ Health</u> **41**(5): 282-6.
- Voisin, C., I. Marin, et al. (1994). "Environmental airborne tremolite asbestos pollution and pleural plaques in Afghanistan." <u>Chest</u> **106**(3): 974-6.
- Wagner, J. C., C. A. Sleggs, et al. (1960). "Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province." <u>Br J Ind Med</u> 17: 260-71.
- Wang, N. S., M. C. Jaurand, et al. (1987). "The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study." <u>Am J Pathol</u> 126(2): 343-9.
- Whitaker, D. (2000). "The cytology of malignant mesothelioma." Cytopathology 11(3): 139-51.

- Wong, L., J. Zhou, et al. (2002). "Inactivation of p16INK4a expression in malignant mesothelioma by methylation." Lung Cancer **38**(2): 131-6.
- Xio, S., D. Li, et al. (1995). "Codeletion of p15 and p16 in primary malignant mesothelioma." <u>Oncogene</u> 11(3): 511-5.
- Yegles, M., L. Saint-Etienne, et al. (1993). "Induction of metaphase and anaphase/telophase abnormalities by asbestos fibers in rat pleural mesothelial cells in vitro." <u>Am J Respir Cell Mol Biol</u> 9(2): 186-91.
- Yoder, J. A., C. P. Walsh, et al. (1997). "Cytosine methylation and the ecology of intragenomic parasites." <u>Trends Genet</u> **13**(8): 335-40.

Chapter 2

Asbestos burden predicts survival in pleural mesothelioma

Brock C. Christensen, John J. Godleski, Cora R. Roelofs, Jennifer L. Longacker, Raphael Bueno, David J. Sugarbaker, Carmen J. Marsit, Heather H. Nelson, Karl T. Kelsey

Environmental Health Perspectives, In Press, 2008

Asbestos burden predicts survival in pleural mesothelioma

Brock C. Christensen^{1,2}, John J. Godleski^{1,3}, Cora R. Roelofs⁴, Jennifer L. Longacker⁵, Raphael Bueno⁶, David J. Sugarbaker⁶, Carmen J. Marsit², Heather H. Nelson⁷, Karl T.

Kelsey^{2,8}

- ¹ Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115
- ² Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
- ³ Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- ⁴ Department of Work Environment, University of Massachusetts Lowell, Lowell, Massachusetts 01854
- ⁵ Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
- ⁶ Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- ⁷ University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, Minnesota 55455
- ⁸ Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island 02912

Abstract

Malignant pleural mesothelioma (MPM) is a rapidly fatal asbestos-associated malignancy with a median survival time of less than one year following diagnosis. Treatment strategy is determined in part using known prognostic factors. The relationship between asbestos exposure and survival outcome in MPM was examined in an effort to advance the understanding of the contribution of asbestos exposure to MPM prognosis. We studied incident cases of MPM patients enrolled through the International Mesothelioma Program at Brigham and Women's Hospital in Boston using survival follow-up, self-reported asbestos exposure (n = 128), and a subset of cases (n = 80) with quantitative asbestos fiber burden measures. Consistent with the established literature, we found independent, significant associations between male gender and reduced survival (P < 0.04), as well as between nonepithelioid tumor histology and reduced survival (P < 0.02). While self-reported exposure to asbestos was not predictive of survival among our cases, stratifying quantitative asbestos fiber burden into groups of low (0 - 99 asbestos bodies), moderate (100 - 1099), and high fiber burden (>1099), suggested a survival duration association among these groups (P =0.06). When adjusting for covariates in a Cox model, patients with low asbestos burden had a 3-fold elevated risk of death compared to patients with moderate fiber burden (95% CI, 0.95 -9.5, P = 0.06), and patients with high asbestos burden had 4.8-fold elevated risk of death (95% CI, 1.5 - 15.0, P < 0.01) versus those with moderate exposure. Our data suggest that patient survival is associated with asbestos fiber burden in MPM and is perhaps modified by susceptibility.

Introduction

Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy with a median survival time of less than one year. The single most important risk factor for MPM is exposure to asbestos, which occurs in 70 – 80% or more of these patients (Tammilehto, Maasilta et al. 1992; Robinson and Lake 2005). Over 3,000 deaths can be attributed to MPM each year in the United States, and worldwide its incidence is on the rise (Pelin, Hirvonen et al. 1994; Price 1997; Morinaga, Kishimoto et al. 2001; Roushdy-Hammady, Siegel et al. 2001; Price and Ware 2004). As a result of the profound disease risk associated with exposure to asbestos disease–estimated at \$265 billion over the next 40 years–has become a tremendous economic burden (Bhagavatula, Moody et al. 2001). Although MPM incidence trends may plateau and begin to decline in the coming years in the U.S. (Price 1997; Price and Ware 2004), asbestos-containing products are still imported into the U.S. Moreover, asbestos use in other nations remains widespread and significant (Robinson and Lake 2005).

Following diagnosis of MPM, the options for treatment are in part dictated by known prognostic factors. Notable predictors of reduced survival in this disease are male gender and non-epithelioid histologies (Zellos and Christiani 2004). Recently, it was reported that a history of asbestos exposure is associated with reduced survival (Flores, Zakowski et al. 2007). In an effort to confirm and extend this observation, we used both self-reported (n = 128) and quantitative asbestos burden measures (n = 80) in a subset of cases to examine the relationship between asbestos exposure and MPM treatment outcome.

Materials and Methods

Study population and exposure data

Lung tissue and tumor tissue were obtained following surgical resection of pleural mesothelioma from incident cases seen at the International Mesothelioma Program at Brigham and Women's Hospital from 2000 – 2006. Quantification of asbestos bodies in samples of lung tissue from multiple sites in the resected lung (De Vuyst, Karjalainen et al. 1998) was carried out as previously described (Churg and Warnock 1977). All patients provided informed consent under the approval of the appropriate Institutional Review Boards. Clinical information was obtained from medical record review. Pathological diagnosis and date of diagnosis was obtained from the medical record of the initial diagnosis, either at Brigham or the primary referring clinic, after having been confirmed by a pathologist's review (JGG). Each patient was assessed for history of exposure to asbestos by a trained industrial hygienist as well as additional demographic and environmental data by obtaining their medical and occupational history with an in-person questionnaire or interview. Patients were followed up for survival using the national death index to determine date of death. Surviving patients were censored based on their last known clinic visit. Statistical analysis

Univariate tests for association between asbestos exposure, asbestos body burden, patient demographic, and tumor characteristic data were carried out with the appropriate statistical tests using statistical analysis software (SAS). Similarly, tests for association between these variables and survival were carried out with Log-rank tests on Kaplan-Meier survival probability plot strata. Also, a Cox proportional hazards model was used to adjust for co-variates when examining overall patient survival.

Results

Tumor and lung tissue from patients was obtained during surgical resection, and although surgically treated patients tend to be slightly younger and have more epithelioid disease versus the total MPM patient population, this cohort is highly similar to other surgically treated cohorts (Pass, Wali et al. 2008). Survival data were available on all 128 cases, and of these, 83 cases had available asbestos body burden data. Among the cases with available asbestos body counts, three had extremely high counts–14,870, 19,681, and 303,852–compared to the median count of 158. In an effort to avoid an analysis anchored by extreme values, we did not include data from the three patients whose lungs had these asbestos burden values. In Table 2.1, exposure, demographic, and tumor histology data are presented for both all 128 cases and the subset of 80 cases with asbestos burden data. Cases with asbestos burden data did not differ significantly by these variables from cases without fiber burden data.
	Total n=128	Asbestos burden data available
	n (%)	n (%) (n=80)
Gender		
Female	30 (23)	20 (25)
Male	98 (77)	60 (75)
Patient Age		
Range	30 - 85	30 - 80
Mean (sd)	62 (10.1)	61 (9.8)
Histology		
Epithelioid	91 (71)	60 (75)
Mixed	33 (26)	18 (22.5)
Sarcomatoid	4 (3)	2 (2.5)
Asbestos Exposure ^a		
Yes	95 (74)	59 (74)
No	33 (26)	21 (26)
Asbestos Body Count ^b		
Range (median)	NA	0-6211 (128)
Mean (sd)	<u>NA</u>	875 (1467)

Table 2.1. Mesothelioma patient demographics and tumor characteristics

^a Self reported ^b Data for 83 cases available, three outliers removed

Survival time was defined as time from diagnosis to death or last known follow-up. Figure 2.1 shows the Kaplan-Meier survival probability plots stratified by gender, and the Log-rank test indicates a significantly reduced survival for males versus females (P < 0.04). Similarly, Figure 2.2 shows the Kaplan-Meier survival plots by tumor histology. These data reveal a significant survival difference between epithelioid and non-epithelioid histologies (Log-rank P < 0.02), as well as a significant difference among epithelioid, biphasic, and sarcomatoid histologies (Log-rank P < 0.01).

Figure 2.1. Survival by gender in MPM

Survival time is defined as time from diagnosis to death or last known follow-up and circles represent censored values. The Log-rank method was used to test for a difference between strata. Kaplan-Meier survival probability plots of males and females showing that males have significantly reduced survival versus females (P < 0.04, n = 128).

A)

Figure 2.2. MPM tumor histology and survival

Survival time is defined as time from diagnosis to death or last known follow-up and circles represent censored values. The Log-rank method was used to test for a difference between strata. A) Kaplan-Meier survival probability plots of patients with an epithelioid tumor and patients with a mixed or sarcomatoid tumor. Patients with a non-epithelioid tumor have significantly reduced survival compared to those with an epithelioid tumor (P < 0.02, n = 128). B) Kaplan-Meier survival probability plots of patients with an epithelioid, biphasic, or sarcomatoid tumor. Survival was significantly different among patients with epithelioid, biphasic and sarcomatoid tumor types (P < 0.01, n = 128).

Next we examined the relationships among asbestos exposure, asbestos fiber burden, patient demographic, tumor histology, and survival data; and we found a significant difference among asbestos fiber burden levels and survival. Among all 128 cases, self-reported exposure to asbestos was not predictive of survival in MPM (Log-rank P = 0.44, data not shown). However, there was a significant association between self-reported asbestos exposure and older age at diagnosis (reported exposure; 62.0 ± 9.5 years, no reported exposure; 56.9 ± 9.7 years; T-test, P < 0.05), as well as between male gender and reported asbestos burden data from 80 cases showed that males (mean count = 219, range = 0 - 6211) had significantly higher asbestos burden than females (median count = 20, range = 0 - 2437, Wilcoxon Test P < 0.0001). Models of survival by asbestos exposure did not demonstrate a linear trend; thus, data were stratified into tertiles for subsequent analysis. Stratifying asbestos burden data into tertiles of low burden (0 - 99 asbestos bodies), moderate burden (100 - 1099 a.b.), and high

burden (>1099 a.b.), there was an association of fiber burden with survival among these groups that approached statistical significance (Figure 2.3, Log-rank P = 0.06).

Survival time is defined as time from diagnosis to death or last known follow-up and circles represent censored values. The Log-rank method was used to test for a difference among strata. Kaplan-Meier survival probability plots of patients with available asbestos body counts (n = 80). Survival differences among exposure groups approaches statistical significance (P = 0.06).

Using a Cox proportional hazards model to adjust for covariates, cases with low asbestos fiber burden had a 3-fold elevated risk of death (95% CI, 0.95 - 9.5, P = 0.06) compared to cases with moderate burden (Table 2). Patients with high asbestos fiber burden had 4.8-fold elevated risk of death (95% CI, 1.5 - 15.0, P < 0.01) compared to patients with moderate burden (Table 2.2). Including the three cases with extreme outlying asbestos counts in this model did not significantly alter the results (data not shown).

Table 2.2. Asbestos body burden predicts survival in MPM, Cox's proportional hazards model.

Co-variate	n (%)	Hazard Ratio (95% CI)	P-value
Gender			
Male	60 (75)	1.0 (reference)	
Female	20 (25)	0.72 (0.27 – 1.9)	0.94
Histology			
Epithelioid	54 (77)	1.0 (reference)	
Mixed	14 (20)	0.82 (0.38 - 1.8)	0.62
Sacromaoid	2 (3)	3.7 (0.35 - 39.1)	0.28
Asbestos body count			
0 - 99	37 (46)	3.0 (0.95 - 9.5)	0.06
100 - 1099	21 (26)	1.0 (reference)	
>1099	22 (28)	4.8 $(1.5 - 15.0)$	< 0.01

Model is controlled for age and all variables in the table

Discussion

In this study we evaluated the relationships among asbestos exposure, asbestos fiber burden, patient demographics, tumor histology, and survival in MPM. Similar to other groups, we found that male gender and non-epithelioid histologies predict reduced survival (Flores, Zakowski et al. 2007). Interestingly, we also demonstrated that after correcting for co-variates, low or high lung tissue asbestos burden predicted a higher risk of death compared to moderate asbestos burden.

Historically, most asbestos exposure is occupationally related and affects individuals who mined, manufactured, or applied asbestos-containing products (McDonald and McDonald 1980). Given that men are more likely employed in asbestos associated occupations, it is not surprising that they have higher levels of fiber burden, and that the ratio of men to women with MPM is between three and five to one (Zellos and Christiani 2004). Our case series follows this pattern: men have a significantly higher lung tissue asbestos burden and outnumber women more than three to one. Men are known to have both higher fiber burdens and significantly reduced survival compared to women, making it reasonable to posit that an increased asbestos fiber burden may contribute to poor survival *per se*. Consistent with this, we observed an increased risk of death among patients with high asbestos burden compared to patients with moderate asbestos burden. However, we also note an increased risk of death among patients with the lowest lung tissue asbestos burden versus those with moderate fiber burden.

The mechanism responsible for this unusual dose-response association with survival is unclear. One possibility is that cases with low asbestos burden were exposed to chrysotile asbestos or other naturally occurring mineral fibers such as erionite, that have been

associated with MPM (Carbone, Kratzke et al. 2002). Chrysotile asbestos is less biopersistent and is considered by many to be less pathogenic than amphibole asbestos. Hence, significant exposure to chrysotile could have occurred in those with lower numbers of asbestos bodies, and this might not be evident in our data. However, lung chrysotile fiber burden has been shown to correlate with asbestos body levels, arguing against significant chrysotile exposure (Butnor, Sporn et al. 2003).

Concomitantly, erionite fibers are reported to have the highest carcinogenic potential of studied fibers, and form ferruginous bodies indistinguishable from asbestos bodies (Dumortier, Coplu et al. 2001). Since erionite fibers do not form ferruginous bodies as readily as asbestos fibers the asbestos body counts in individuals with erionite exposure may underestimate their true internal dose (Dumortier, Coplu et al. 2001). Since the worldwide geographic distribution of erionite is very limited, it is unlikely that patients in this study had this exposure. However, if either of these scenarios were true (patients with low asbestos body counts having significant chrysotile or erionite exposure), it would imply that the fiber dose is directly associated with survival.

A more likely explanation of our results is related to the considerable literature that has documented both the absence of an appreciable threshold for asbestos-induced mesothelioma, and the fact that MPM can occur with very low level exposures (Hansen, de Klerk et al. 1998; Hodgson and Darnton 2000). Further, widespread exposures to asbestos, particularly environmental exposures in some parts of the globe, combined with the rare incidence of mesothelioma, suggest there may be susceptible individuals. In fact, multiple reports indicate that genetics may modify susceptibility to MPM (Li, Lokich et al. 1978; Risberg, Nickels et al. 1980; Martensson, Larsson et al. 1984; Lynch, Katz et al. 1985; Hammar, Bockus et al. 1989; Otte, Sigsgaard et al. 1990; Precerutti, Mayorga et al. 1990; Dawson, Gibbs et al. 1992; Ascoli, Scalzo et al. 1998; Dogan, Baris et al. 2006). When closely examining our asbestos fiber burden data, most of the cases within the low asbestos burden group (0 - 99 asbestos bodies/g lung) had asbestos body counts within the general population mean of 0 - 20 bodies/g lung (Dodson and Atkinson 2006), thus these patients may have a greater inherent susceptibility. Further, our data lead to the hypothesis that patients with high susceptibility suffer from more aggressive disease. Outside of this high susceptibility group, the other two tertiles demonstrate a dose-response relationship between asbestos fiber burden and survival.

In summary, our data suggest that patient survival is associated with asbestos fiber burden in pleural mesothelioma, and this association is perhaps modified by susceptibility. Studies using larger case groups-ideally with chrysotile and erionite exposure data-are necessary to further elucidate the ability of asbestos burden to predict survival in MPM.

References

- Ascoli, V., C. C. Scalzo, et al. (1998). "Familial pleural malignant mesothelioma: clustering in three sisters and one cousin." <u>Cancer Lett</u> **130**(1-2): 203-7.
- Bhagavatula, R., R. Moody, et al. (2001). "Asbestos: a moving target." <u>Best's Review</u> 102(5): 85-90.
- Butnor, K. J., T. A. Sporn, et al. (2003). "Exposure to brake dust and malignant mesothelioma: a study of 10 cases with mineral fiber analyses." <u>Ann Occup Hyg</u> 47(4): 325-30.
- Carbone, M., R. A. Kratzke, et al. (2002). "The pathogenesis of mesothelioma." <u>Semin Oncol</u> **29**(1): 2-17.
- Churg, A. and M. L. Warnock (1977). "Correlation of quantitative asbestos body counts and occupation in urban patients." <u>Arch Pathol Lab Med</u> **101**(12): 629-34.
- Dawson, A., A. Gibbs, et al. (1992). "Familial mesothelioma. Details of 17 cases with histopathologic findings and mineral analysis." <u>Cancer</u> **70**(5): 1183-7.
- De Vuyst, P., A. Karjalainen, et al. (1998). "1998 ERS Task Force Report Guidelines for mineral fibre analyses in biological samples: report of the ERS working group." <u>Eur</u> <u>Respir J 11</u>: 1416-1426.
- Dodson, R. F. and M. A. Atkinson (2006). "Measurements of asbestos burden in tissues." Ann N Y Acad Sci 1076: 281-91.
- Dogan, A. U., Y. I. Baris, et al. (2006). "Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey." <u>Cancer Res</u> 66(10): 5063-8.
- Dumortier, P., L. Coplu, et al. (2001). "Erionite bodies and fibres in bronchoalveolar lavage fluid (BALF) of residents from Tuzkoy, Cappadocia, Turkey." <u>Occup Environ Med</u> 58(4): 261-6.
- Flores, R. M., M. Zakowski, et al. (2007). "Prognostic factors in the treatment of malignant pleural mesothelioma at a large tertiary referral center." <u>J Thorac Oncol</u> 2(10): 957-65.
- Hammar, S. P., D. Bockus, et al. (1989). "Familial mesothelioma: a report of two families." <u>Hum Pathol</u> **20**(2): 107-12.
- Hansen, J., N. H. de Klerk, et al. (1998). "Environmental exposure to crocidolite and mesothelioma: exposure-response relationships." <u>Am J Respir Crit Care Med</u> 157(1): 69-75.

- Hodgson, J. T. and A. Darnton (2000). "The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure." <u>Ann Occup Hyg</u> 44(8): 565-601.
- Li, F., J. Lokich, et al. (1978). "Familial mesothelioma after intense asbestos exposure at home." Journal of the American Medial Association 240: 467.
- Lynch, H. T., D. Katz, et al. (1985). "Familial mesothelioma: review and family study." <u>Cancer Genet Cytogenet</u> **15**(1-2): 25-35.
- Martensson, G., S. Larsson, et al. (1984). "Malignant mesothelioma in two pairs of siblings: is there a hereditary predisposing factor?" <u>Eur J Respir Dis</u> 65(3): 179-84.
- McDonald, A. D. and J. C. McDonald (1980). "Malignant mesothelioma in North America." <u>Cancer</u> 46(7): 1650-6.
- Morinaga, K., T. Kishimoto, et al. (2001). "Asbestos-related lung cancer and mesothelioma in Japan." Ind Health **39**(2): 65-74.
- Otte, K. E., T. I. Sigsgaard, et al. (1990). "Malignant mesothelioma: clustering in a family producing asbestos cement in their home." <u>Br J Ind Med</u> 47(1): 10-3.
- Pass, H. I., A. Wali, et al. (2008). "Soluble mesothelin-related peptide level elevation in mesothelioma serum and pleural effusions." <u>Ann Thorac Surg</u> 85(1): 265-72; discussion 272.
- Pelin, K., A. Hirvonen, et al. (1994). "Expression of cell adhesion molecules and connexins in gap junctional intercellular communication deficient human mesothelioma tumour cell lines and communication competent primary mesothelial cells." <u>Carcinogenesis</u> 15(11): 2673-5.
- Precerutti, J. A., M. Mayorga, et al. (1990). "Is there a "genetic model" in the genesis of malignant pleural mesothelioma?" <u>Hum Pathol</u> 21(9): 983.
- Price, B. (1997). "Analysis of current trends in United States mesothelioma incidence." <u>Am J</u> <u>Epidemiol</u> 145(3): 211-8.
- Price, B. and A. Ware (2004). "Mesothelioma trends in the United States: an update based on Surveillance, Epidemiology, and End Results Program data for 1973 through 2003." <u>Am J Epidemiol</u> 159(2): 107-12.
- Risberg, B., J. Nickels, et al. (1980). "Familial clustering of malignant mesothelioma." <u>Cancer</u> **45**(9): 2422-7.
- Robinson, B. W. and R. A. Lake (2005). "Advances in malignant mesothelioma." <u>N Engl J</u> <u>Med</u> 353(15): 1591-603.
- Roushdy-Hammady, I., J. Siegel, et al. (2001). "Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey." Lancet **357**(9254): 444-5.

- Tammilehto, L., P. Maasilta, et al. (1992). "Diagnosis and prognostic factors in malignant pleural mesothelioma: a retrospective analysis of sixty-five patients." <u>Respiration</u> **59**(3): 129-35.
- Zellos, L. and D. C. Christiani (2004). "Epidemiology, biologic behavior, and natural history of mesothelioma." <u>Thorac Surg Clin</u> 14(4): 469-77, viii.

Chapter 3

Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma

Brock C. Christensen, John J. Godleski, Carmen J. Marsit, E.A. Houseman, Cristina Y.

Lopez-Fagundo, Jennifer L. Longacker, Raphael Bueno, David J. Sugarbaker,

Heather H. Nelson, Karl T. Kelsey

Carcinogenesis, In Press, 2008

Asbestos exposure predicts cell cycle control gene promoter

methylation in pleural mesothelioma

Brock C. Christensen^{1, 2}, John J. Godleski¹, Carmen J. Marsit², E.A. Houseman³, Cristina Y.

Lopez-Fagundo⁴, Jennifer L. Longacker⁵, Raphael Bueno⁶, David J. Sugarbaker⁶,

Heather H. Nelson⁷, Karl T. Kelsey^{2, 8}

Department of Environmental Health Harvard School of Public Health, Boston, Massachusetts 02115.

² Department of Pathology and Laboratory Medicine Brown University, Providence, Rhode Island 02912.

- ³ Department of Work Environment University of Massachusetts Lowell, Lowell, Massachusetts 01854.
- ⁴ Department of Industrial Biotechnology Universidad de Puerto Rico, Mayagüez, Puerto Rico 00681.
- ⁵ Department of Environmental Health Boston University School of Public Health, Boston, Massachusetts 02118.
- ⁶ Division of Thoracic Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, Massachusetts 022115.
- ⁷ Division of Epidemiology and Community Health Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455.
- ⁸ Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island 02912.

Abstract

Malignant pleural mesothelioma (MPM) is a rapidly fatal tumor with increasing incidence world-wide responsible for many thousands of deaths annually. Although there is a clear link between exposure to asbestos and mesothelioma, and asbestos is known to be both clastogenic and cytotoxic to mesothelial cells, the mechanisms of causation of MPM remain largely unknown. However, there is a rapidly emerging literature that describes inactivation of a diverse array of tumor suppressor genes (TSG) via promoter DNA CpG methylation in MPM, although the etiology of these alterations remains unclear. We studied the relationships among promoter methylation silencing, asbestos exposure, patient demographics, and tumor histology using a directed approach; examining six cell cycle control pathway TSGs in an incident case series of 70 MPMs. Promoter hypermethylation of APC, CCND2, CDKN2A, CDKN2B, HPPBP1, and RASSF1 were assessed. We observed significantly higher lung asbestos body burden if any of these cell cycle genes were methylated (p < 0.02), and there was a significant trend of increasing asbestos body counts as the number of methylated cell cycle pathway genes increased from 0, to 1, to >1, (p<0.005). This trend of increasing asbestos body count and increasing number of methylated cell cycle pathway genes remained significant (p < 0.05) after controlling for age, gender, and tumor histology. These data suggest a novel tumorigenic mechanism of action of asbestos, and may contribute to the understanding of precisely how asbestos exposure influences the etiology and clinical course of malignant mesothelioma.

Introduction

Malignant pleural mesothelioma (MPM) is a highly lethal neoplasm linked with asbestos exposure in approximately 70 – 80% of patients. Worldwide, the incidence of MPM is rising, with approximately 3000 cases per year reported in The United States, 2000 cases per year in Great Britain, and 500 per year in Japan (Pelin, Hirvonen et al. 1994; Price 1997; Morinaga, Kishimoto et al. 2001; Roushdy-Hammady, Siegel et al. 2001; Price and Ware 2004). The costs associated with compensation for asbestos-related disease and asbestos remediation have been estimated at \$265 billion in the U.S. alone over the next forty years (Bhagavatula R 2001). In addition, serious attention has recently been given to the potential contribution of exposure to the dust from the collapse of the World Trade Center towers in New York City to an increased risk for multiple serious conditions including MPM (Landrigan, Lioy et al. 2004).

Since asbestos use has been on the decline for first world nations for 20 - 30 years, the overall incidence of MPM is expected to peak in the next few years in both the U.S. and Europe (Peto, Decarli et al. 1999; Kukreja, Jaklitsch et al. 2004). At the same time, asbestos continues to be mined, exported, and widely used in many third world countries (Robinson and Lake 2005). Many nations including China, India, and some Latin American countries are still importing vast amounts of asbestos (Joshi and Gupta 2004; Kazan-Allen 2005). This fact, combined with the long 20-50 year latency of MPM, virtually assures that the MPM epidemic will continue for decades to come. This necessitates continuing research into the molecular genetic consequences of exposure to asbestos in an effort to better understand MPM pathogenesis, hopefully translating to prevention strategies and improved patient outcomes.

The pathogenic mechanisms of asbestos contributing to the development of MPM have long been studied, though they remain incompletely characterized. Many in vitro studies have demonstrated both clastogenic and cytotoxic effects of asbestos fibers (Kelsey, Yano et al. 1986; Jaurand 1997). Phagocytosis of fibers by macrophages and oxido-reduction reactions on fiber surfaces are known to generate genotoxic reactive oxygen species that are capable of inducing DNA damage (Wang, Jaurand et al. 1987; Okayasu, Takahashi et al. 1999; Xu, Wu et al. 1999) and leading to genetic alterations in MPM (Xu, Huang et al. 2007). In addition to genetic alterations, the rapidly emerging literature indicates that epigenetic tumor suppressor gene (TSG) silencing via promoter methylation occurs in MPM (Ohta, Shridhar et al. 1999; Murthy, Shen et al. 2000; Toyooka, Pass et al. 2001; Hirao, Bueno et al. 2002; Toyooka, Carbone et al. 2002; Wong, Zhou et al. 2002; Lee, He et al. 2004; Shivapurkar, Toyooka et al. 2004; He, Lee et al. 2005; Shigematsu, Suzuki et al. 2005; Suzuki, Toyooka et al. 2005; Tsou, Shen et al. 2005; Tsou, Galler et al. 2007). Methylation of cytosines in the context of promoter CpG islands of TSGs is a well established mechanism of stable gene silencing in human cancers (Jones and Baylin 2002; Baylin 2006). However, the precise mechanisms underlying the induction of TSG methylation and the factors that influence tumor-specific methylation profiles are incompletely understood. Exposure to carcinogens has been associated with TSG methylation silencing, and recently, simultaneous examination of multiple TSGs involved in different cellular pathways and processes has suggested that genes are phenotypically selected for silencing. Initial studies demonstrated that there is a dose-response for methylation silencing of CDKN2A by tobacco smoke in lung cancer (Kim, Nelson et al. 2001; Toyooka, Suzuki et al. 2004). Indeed, in lung adenocarcinoma, methylation of TSGs CDKN2A and APC was also significantly associated

with exposure to tobacco smoke (Toyooka, Maruyama et al. 2003). Dammann et al. have shown that asbestos exposure is significantly associated with methylation at CDKN2A in non-small cell lung cancer (Dammann, Strunnikova et al. 2005). Suzuki et al. reported that methylation of RRAD, APPBP1, CCND2, RASSF1, and TMS1 was significantly more prevalent in SV40 positive MPM (Suzuki, Toyooka et al. 2005). Furthermore, in a recent study of 28 TSG loci in MPM, Tsou et al. found a significant association between methylation of two TSGs; MT1A and MT2A with self reported asbestos exposure (Tsou, Galler et al. 2007). Taken together, these data strongly suggest that asbestos exposure may act to induce methylation silencing of TSGs. However, it remains unclear if this is a direct or indirect selection for TSG inactivation across phenotypically important pathways; if the process is stochastic and less phenotypically driven; or whether a dose-response exists between exposure and methylation extent. To examine this question we have focused our efforts upon TSGs in the cell cycle control and proliferation pathway. We studied the APC, CCND2, CDKN2A, CDKN2B, HPPBP1, and RASSF1 genes for promoter hypermethylation in 70 incident cases of MPM. These genes were chosen as both a part of a larger pathwaybased group of genes studied in our lab-in this and other types of human cancers-and because they are generally considered among the most important cell cycle control TSGs known to be inactivated via methylation in cancer (Kusy, Larsen et al. 2004; Agathanggelou, Cooper et al. 2005; Schulz 2006). We examined whether methylation of specific genes, methylation at any of these loci, or methylation of an increasing number of genes was associated with asbestos exposure, patient demographic variables or tumor histology. In this process we were fortunate to have quantitative asbestos burden data to explore the relationship between exposure and epigenetic gene inactivation in MPM.

Materials and Methods

Study population

Tumor material was obtained following surgical resection at Brigham and Women's Hospital through the support of the International Mesothelioma Program. All patients provided informed consent under the approval of the appropriate Institutional Review Boards. Clinical information, including pathological diagnosis was obtained from medical record review. Each patient was assessed for history of exposure to asbestos as well as additional demographic and environmental data by obtaining their medical and occupational history with an in-person questionnaire or interview. Patients were followed up for survival using the death index and last known clinic visit.

Methylation analysis

Tumor DNA was extracted from frozen tissue using the QIAamp DNA mini kit according to the manufacturer's protocol (Qiagen, Valencia, CA). Tumor DNA was modified by sodium bisulfite to convert unmethylated cytosines to uracil using the EZ DNA Methylation Kit (Zymo Research, Orange, CA) according to the manufacturer's protocol. Methylation-specific PCR (MSP) analysis was conducted with modified template DNA as previously described (Herman, Graff et al. 1996). PCR was performed with 50ng of modified DNA in a mixture with 1 X PCR buffer (Applied Biosystems, Foster City, CA), 0.2mM dNTPs, 0.5µM primers and 1.25 units of Ampli Taq Gold (Applied Biosystems) in a total volume of 25µl. PCR products were analyzed by electrophoresis in 3% agarose gel. Sodium bisulfite modified DNA from circulating blood lymphocytes of healthy control subjects, untreated and treated with *Sss*I DNA methylase, were used as negative and positive controls respectively in each run. In addition, no template negative controls were also present in each

run. All methylation-specific PCR reactions are optimized to detect ~5% methylation in the sample, consistent with the cut-off values generally utilized in quantitative assays of methylation (Eads, Lord et al. 2000; Ogino, Kawasaki et al. 2006).

Asbestos body burden

Quantification of asbestos bodies was done using the protocol of Churg and Warnock (Churg and Warnock 1977). Portions of normal lung tissue (1-4 grams) obtained from surgery were blotted to remove excess liquid, weighed, minced and digested with sodium hypochlorite. This was mixed, vented and then sealed for 48 hours. Following digestion, samples were pelleted, resuspended in 25ml of 50% ethanol and 10ml of chloroform, vortexed, and 15ml of chloroform was added. Samples were then gently centrifuged for 10min, supernatant was aspirated, pellets resuspended in 25ml 25% ethanol, and then mixed well and filtered through a 0.45µm Milipore filter (Millipore, Billerica, MA). Sample tubes were washed twice with 25ml of 25% ethanol and filtered. Similarly, the sides of the filter funnel were washed with 25ml of 25% ethanol and filtered. Filters were dehydrated, cleared twice for one minute each in 95% ethanol, 100% ethanol and then xylene, cut in half, recleared in xylene for another minute, mounted on microscope slides with a counting grid using Permount[™] Mounting Medium (Fisher Scientific, Hampton, NH) and dried flat. Asbestos bodies were then counted, and the asbestos bodies per (wet weight) gram of lung was calculated with the following equation: number asbestos bodies / (squares counted x 100.74 x weight in grams of the digested tissue sample).

Statistical analysis

Univariate tests for association between methylation at each of the cell cycle genes and patient demographic, tumor characteristic and exposure variables were carried out with

the appropriate statistical tests using SAS analysis software. Similarly, tests for association between methylation at zero, one or greater than one gene, and patient demographic, tumor characteristic and exposure variables were also performed. Simple linear regression was used to test for association between the number of methylated cell cycle genes and asbestos body count. Finally, an ordered logistic model (SAS PROC PROBIT), predicting the number of methylated cell cycle genes was used to control for potential confounders and evaluate the contribution of asbestos body levels to cell cycle gene methylation.

Results

A total of 83 cases had available asbestos body burden data. Among the cases with available asbestos body counts, there were 3 extreme outliers (14,870, 19,681, and 303,852 compared to the median count 158), and 10 cases with zero counts. As pleural mesothelioma arising without detectable asbestos exposure may have a distinct etiology and biology, and in an effort to avoid an analysis anchored by extreme values, we did not include tumors with zero asbestos body counts or the extreme outliers in the analysis, restricting it to the remaining 70 cases. We investigated the methylation status of six cell cycle control associated genes; *CDKN2A*, *CDKN2B*, *RASSF1*, *CCND2*, *APC*, and *APPBP1*. Exposure, demographic, and tumor characteristic data for these 70 cases are in presented in Table 3.1.

Gender, n (%)	
Female	14 (20)
Male	56 (80)
Patient Age	
Range	30 - 80
Mean (SD)	62 (9.1)
Histology, n (%)	
Epithelioid	54 (77)
Mixed	14 (20)
Sarcomatoid	2 (3)
Asbestos Exposure*, n (%)	
Yes	53 (76)
No	17 (24)
Asbestos Body Count	
Range	6 - 6211
Mean (SD)	1000 (1529)

Table 3.1. Mesothelioma patie	t demographics a	id tumoi	· characteristics
-------------------------------	------------------	----------	-------------------

* Self reported

The prevalence of methylation among the cell cycle control genes varied; *RASSF1*, was methylated in 33% (n = 22) of cases, *APPBP1* in 20% (n = 14), *CDKN2A* in 13% (n = 9), *APC* and *CCND2* in 9% (n = 6), and finally, *CDKN2B* was methylated in 4% (n = 3) of cases (Figure 3.1).

Figure 3.1. Prevalence of cell cycle control gene methylation in pleural mesothelioma Prevalence of methylation positive cell cycle control genes among pleural mesotheliomas as measured by methylation specific PCR, and prevalence of tumors with zero, one, or more than one methylation positive cell cycle control gene.

We found no significant associations between patient gender or tumor histology and methylation at any of the six individual loci examined. However, patients with *RASSF1* methylation were significantly older (65 ± 6.6 years) than patients without *RASSF1* methylation (61 ± 9.5 years), (P < 0.05). We observed a similar relationship between methylation of *CCND2* and older age, (methylated; 69 ± 8.2 years, unmethylated; 61 ± 8.9 years), (P < 0.05). We then asked whether this relationship with age was a more general phenomenon, and found that methylation at any (1 or more gene) of the six TSGs was significantly associated with increased age, (methylated; 64 ± 8.1 years, unmethylated; 58 ± 9.4 years), (P < 0.01). Since all of these genes are involved in the process of cell cycle control, we grouped cases into three categories; cases with no genes methylated, cases with one gene methylated, and cases with more than one cell cycle control gene methylated. Figure 1 displays the prevalence of methylation of zero (40%, n = 28), one (37%, n = 26), or more than one (23%, n = 16), cell cycle pathway genes.

Next, we examined the relationship between cell cycle control gene methylation and exposure to asbestos using both self-reported and quantitative asbestos body counts as exposure variables. While we found no significant associations between methylation at any one of the six genes and self-reported asbestos exposure, cases with *RASSF1* methylation did have significantly higher asbestos body counts (mean count = 698), compared to cases without *RASSF1* methylation (mean count = 409), (P < 0.01, Wilcoxon Test). Similarly, there was no significant relationship between methylation of any cell cycle gene (comparing samples with no genes methylated to those with any gene(s) methylated) and self-reported asbestos exposure. Notably, although we were unable to detect an association between self-reported asbestos exposure and methylation of cell cycle control related genes, we observed a significant association between reported asbestos exposure and elevated asbestos body count (P < 0.005). We also examined the relationships between asbestos body count and patient age, gender, and tumor histology. Although we did not find any association between asbestos body count and age or histology (data not shown), we did observe a significant difference in

asbestos body count in males (mean count = 1218) compared with females (mean count=213), (P < 0.001, Wilcoxon).

Figure 3.2 shows that log transformed asbestos body counts are significantly correlated with the number of cell cycle control genes methylated (linear regression F-test, P < 0.005).

Figure 3.2. Asbestos body count versus cell cycle gene methylation

Log transformed asbestos body count (y-axis) is plotted versus the number of methylated cell cycle control genes (x-axis). Using simple linear regression there is a significant association between increasing asbestos burden and increasing number of methylated cell cycle control genes (P < 0.005, $R^2 = 0.12$).

In order to control for potential confounders of this relationship and to better represent the discreet ordinal nature of the methylation count, we modeled the data using an ordered logistic regression that predicts zero, one, or more than one methylated cell cycle pathway gene (Table 3.2). This model indicates that when controlling for gender and tumor histology, both age and asbestos body count are significant predictors (P = 0.04 and P < 0.05, respectively) of an increased number of methylated cell cycle control genes.

Table 3.2. Ordered logistic regression model predicting increasing number of methylated cell

Predictor	Estimate	<i>P</i> -value
Age	0.67	0.04
Gender		
Male	1.0	referent
Female	-0.73	0.32
Histology		
Epithelioid	1.0	referent
Mixed & Sarcomatoid	0.77	0.21
Asbestos body count*	0.33	< 0.05

cycle control genes in pleural mesothelioma (n = 70).

*Scaled to: (asbestos body count / 1000)

Discussion

We evaluated promoter hypermethylation of six cell cycle control and progression pathway genes in an incident case series of 70 MPMs examining whether methylation of specific genes, methylation of any of these loci, or methylation of an increasing number of genes was associated with patient demographic variables, tumor histology, or asbestos exposure. We chose to study these genes in part because they have been studied by our lab as a part of a pathway-based approach to investigating TSG methylation in other human cancers. Further, these genes are known to be subject to inactivation by promoter hypermethylation in cancer, and are recognized as important in cell cycle control and progression (Kusy, Larsen et al. 2004; Agathanggelou, Cooper et al. 2005; Schulz 2006). We examined these genes for methylation using methylation-specific PCR. This technique is known to be sensitive to 5% of cells with methylation, and is therefore ample in detecting aberrant methylation events of phenotypic importance (Marsit, Karagas et al. 2005).

Methylation of *RASSF1* has been observed in 32% of MPM (n = 66) and previously significantly associated with SV40 exposure (Toyooka, Pass et al. 2001). We observed essentially the same prevalence of *RASSF1* methylation among our cases (33%), and we also found that *RASSF1* methylation was significantly associated with increased asbestos body count. Furthermore, significant, independent associations between older patient age and methylation of *CCND2* and *RASSF1* were observed. The association between older age and methylation is not unexpected since it is known that CpG island hypermethylation often increases with age (Holliday 1985; Issa 2000). Also, in another report of TSG methylation in MPM, Toyooka *et al.* reported levels of methylation at the *APC*, *CDKN2A*, and *CDKN2B* genes similar to ours (Toyooka, Pass et al. 2001).

One great advantage of this study was the availability of a quantitative measure of asbestos exposure. Ferruginous asbestos bodies form as a result of the interaction of macrophages with asbestos fibers, and presence of asbestos bodies is an indicator of past exposure to asbestos. By quantifying their level, we are able to estimate the degree of asbestos fiber burden in an individual (Dodson, Atkinson et al. 2005). In our data, tumors with methylation have significantly higher asbestos exposure, using the asbestos body counts as a quantitative measure of burden. Furthermore, there was a significant trend between increasing number of methylated cell cycle TSGs (0 to 1 to >1), and increasing asbestos body count. Finally, an ordered logistic regression model controlling for gender, and tumor histology, showed that both age and an increasing asbestos body count are independent significant predictors of an increased number of methylated cell cycle pathway genes in MPM.

Hence, these data suggest that the induction of methylation in a phenotypically important pathway might occur as a result of physical interaction between asbestos fibers and the parietal pleura. However, precisely how any exposure selects TSGs for silencing has only recently begun to be explored. Maintenance of control over the cell cycle is critical to tumor suppression, but the relationship between dynamic carcinogen exposure and the targeting and induction of tumor-specific methylation profiles is likely to be highly complex. Asbestos exposure is associated with chronic inflammation (Sabo-Attwood, Ramos-Nino et al. 2005), and the physical presence of asbestos fibers at the interface of the mesothelial membrane and the lung induces a dose dependent cycle of death and re-growth of mesothelial cells in the area of fiber deposition (Adamson, Bakowska et al. 1993). Additionally, persistent mitotic stimulation of mesothelial cells after direct physical insult, and reactive oxygen species

generated by the fiber-clearance-related cellular response, may induce a reaction by mesothelial cells akin to that of cells in culture subject to repeated cycles of growth. Repeated passaging of cells in tissue culture, similar to the process of aging, is associated with the induction of TSG silencing by promoter methylation (Baylin 2002). The known decades-long latency of MPM then suggests that there is ample time for appreciable fields of clonally altered cells to accumulate, perhaps leading to malignancy through a combination of acquired genetic and epigenetic alterations enhanced by repeated mitotic selection. Additionally, asbestos fibers are known to be clastogenic and lead to genotoxic damage, and tumors with higher asbestos fiber burden may be induced to grow faster, possibly leading to the preferential selection of clones with silenced cell cycle control TSGs. While these mechanisms of clonal selection for epigenetic silencing are consistent with our data, it does not necessarily imply any direct asbestos fiber interaction with the histone / DNA methylation machinery, but instead that the chronic inflammation response and / or accelerated tumor growth related to asbestos burden may select for cells capable of continued proliferation.

In summary, using a directed pathway-based approach to methylation analysis, and a quantitative measure of asbestos exposure, we observed that methylation silencing of cell cycle TSGs is associated with both older age and asbestos exposure in MPM. Our data, using a quantitative measure of asbestos exposure, demonstrate that epigenetic gene inactivation is a crucial and novel mechanism for asbestos action in the genesis of this rapidly fatal cancer.

References

Adamson, I. Y., J. Bakowska, et al. (1993). "Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung." <u>Am J Pathol</u> 142(4): 1209-16.

Agathanggelou, A., W. N. Cooper, et al. (2005). "Role of the Ras-association domain family 1 tumor suppressor gene in human cancers." <u>Cancer Res</u> 65(9): 3497-508.

- Baylin, S. B. (2002). "Mechanisms underlying epigenetically mediated gene silencing in cancer." <u>Semin Cancer Biol</u> 12(5): 331-7.
- Baylin, S. B., Ohm, J.E. (2006). "Epigenetic gene silencing in cancer a mechanism for early oncogenic pathway addiction?" Nat Rev Cancer 6: 107-116.
- Bhagavatula R, M. R., Russ J (2001). "Asbestos: a moving target." <u>Best's Review</u> 102(5): 85-90.
- Churg, A. and M. L. Warnock (1977). "Correlation of quantitative asbestos body counts and occupation in urban patients." <u>Arch Pathol Lab Med</u> **101**(12): 629-34.
- Dammann, R., M. Strunnikova, et al. (2005). "CpG island methylation and expression of tumour-associated genes in lung carcinoma." <u>Eur J Cancer</u> **41**(8): 1223-36.
- Dodson, R. F., M. A. Atkinson, et al. (2005). "Stability of ferruginous bodies in human lung tissue following death, embalmment, and burial." <u>Inhal Toxicol</u> 17(14): 789-95.
- Eads, C. A., R. V. Lord, et al. (2000). "Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma." <u>Cancer Res</u> **60**(18): 5021-6.
- He, B., A. Y. Lee, et al. (2005). "Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells." <u>Cancer Res</u> **65**(3): 743-8.
- Herman, J. G., J. R. Graff, et al. (1996). "Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands." Proc Natl Acad Sci U S A 93(18): 9821-6.
- Hirao, T., R. Bueno, et al. (2002). "Alterations of the p16(INK4) locus in human malignant mesothelial tumors." <u>Carcinogenesis</u> 23(7): 1127-30.
- Holliday, R. (1985). "The significance of DNA methylation in cellular aging." <u>Basic Life Sci</u> 35: 269-83.
- Issa, J. P. (2000). "CpG-island methylation in aging and cancer." <u>Curr Top Microbiol</u> <u>Immunol</u> 249: 101-18.
- Jaurand, M. C. (1997). "Mechanisms of fiber-induced genotoxicity." <u>Environ Health Perspect</u> 105 Suppl 5: 1073-84.

- Jones, P. A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in cancer." Nat Rev Genet 3(6): 415-28.
- Joshi, T. K. and R. K. Gupta (2004). "Asbestos in developing countries: magnitude of risk and its practical implications." Int J Occup Med Environ Health 17(1): 179-85.
- Kazan-Allen, L. (2005). "Asbestos and mesothelioma: worldwide trends." Lung Cancer 49 Suppl 1: S3-8.
- Kelsey, K. T., E. Yano, et al. (1986). "The in vitro genetic effects of fibrous erionite and crocidolite asbestos." <u>Br J Cancer</u> 54(1): 107-14.
- Kim, D. H., H. H. Nelson, et al. (2001). "p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer." <u>Cancer</u> <u>Res</u> 61(8): 3419-24.
- Kukreja, J., M. T. Jaklitsch, et al. (2004). "Malignant pleural mesothelioma: overview of the North American and European experience." <u>Thorac Surg Clin</u> 14(4): 435-45.
- Kusy, S., C. J. Larsen, et al. (2004). "p14ARF, p15INK4b and p16INK4a methylation status in chronic myelogenous leukemia." Leuk Lymphoma **45**(10): 1989-94.
- Landrigan, P. J., P. J. Lioy, et al. (2004). "Health and environmental consequences of the world trade center disaster." <u>Environ Health Perspect</u> **112**(6): 731-9.
- Lee, A. Y., B. He, et al. (2004). "Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma." <u>Oncogene</u> **23**(39): 6672-6.
- Marsit, C. J., M. R. Karagas, et al. (2005). "Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer." <u>Cancer Res</u> **65**(16): 7081-5.
- Morinaga, K., T. Kishimoto, et al. (2001). "Asbestos-related lung cancer and mesothelioma in Japan." Ind Health **39**(2): 65-74.
- Murthy, S. S., T. Shen, et al. (2000). "Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma." <u>Oncogene</u> **19**(3): 410-6.
- Ogino, S., T. Kawasaki, et al. (2006). "Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis." J Mol Diagn 8(2): 209-17.
- Ohta, Y., V. Shridhar, et al. (1999). "Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma." <u>Cancer</u> 85(12): 2570-6.
- Okayasu, R., S. Takahashi, et al. (1999). "Asbestos and DNA double strand breaks." <u>Cancer</u> <u>Res</u> 59(2): 298-300.

- Pelin, K., A. Hirvonen, et al. (1994). "Expression of cell adhesion molecules and connexins in gap junctional intercellular communication deficient human mesothelioma tumour cell lines and communication competent primary mesothelial cells." <u>Carcinogenesis</u> 15(11): 2673-5.
- Peto, J., A. Decarli, et al. (1999). "The European mesothelioma epidemic." <u>Br J Cancer</u> **79**(3-4): 666-72.
- Price, B. (1997). "Analysis of current trends in United States mesothelioma incidence." <u>Am J</u> <u>Epidemiol</u> 145(3): 211-8.
- Price, B. and A. Ware (2004). "Mesothelioma trends in the United States: an update based on Surveillance, Epidemiology, and End Results Program data for 1973 through 2003." <u>Am J Epidemiol</u> 159(2): 107-12.
- Robinson, B. W. and R. A. Lake (2005). "Advances in malignant mesothelioma." <u>N Engl J</u> <u>Med</u> 353(15): 1591-603.
- Roushdy-Hammady, I., J. Siegel, et al. (2001). "Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey." <u>Lancet</u> **357**(9254): 444-5.
- Sabo-Attwood, T., M. Ramos-Nino, et al. (2005). "Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestosinduced fibrogenesis." <u>Am J Pathol</u> 167(5): 1243-56.
- Schulz, W. A. (2006). "Understanding urothelial carcinoma through cancer pathways." <u>Int J</u> <u>Cancer</u> 119(7): 1513-8.
- Shigematsu, H., M. Suzuki, et al. (2005). "Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies." Int J Cancer 113(4): 600-4.
- Shivapurkar, N., S. Toyooka, et al. (2004). "Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types." Int J Cancer 109(5): 786-92.
- Suzuki, M., S. Toyooka, et al. (2005). "Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection." <u>Oncogene</u> **24**(7): 1302-8.
- Toyooka, S., M. Carbone, et al. (2002). "Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells." <u>Oncogene</u> **21**(27): 4340-4.
- Toyooka, S., R. Maruyama, et al. (2003). "Smoke exposure, histologic type and geographyrelated differences in the methylation profiles of non-small cell lung cancer." Int J <u>Cancer</u> 103(2): 153-60.
- Toyooka, S., H. I. Pass, et al. (2001). "Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma." <u>Cancer Res</u> **61**(15): 5727-30.

- Toyooka, S., M. Suzuki, et al. (2004). "Dose effect of smoking on aberrant methylation in non-small cell lung cancers." Int J Cancer 110(3): 462-4.
- Tsou, J. A., J. S. Galler, et al. (2007). "DNA methylation profile of 28 potential marker loci in malignant mesothelioma." <u>Lung Cancer</u>.
- Tsou, J. A., L. Y. Shen, et al. (2005). "Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung." <u>Lung Cancer</u> 47(2): 193-204.
- Wang, N. S., M. C. Jaurand, et al. (1987). "The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study." <u>Am J Pathol</u> 126(2): 343-9.
- Wong, L., J. Zhou, et al. (2002). "Inactivation of p16INK4a expression in malignant mesothelioma by methylation." <u>Lung Cancer</u> 38(2): 131-6.
- Xu, A., X. Huang, et al. (2007). "Genotoxic mechanisms of asbestos fibers: role of extranuclear targets." <u>Chem Res Toxicol</u> **20**(5): 724-33.
- Xu, A., L. J. Wu, et al. (1999). "Role of oxyradicals in mutagenicity and DNA damage induced by crocidolite asbestos in mammalian cells." <u>Cancer Res</u> **59**(23): 5922-6.

Chapter 4

Epigenetic alteration profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome

Brock C. Christensen, E.A. Houseman, John J. Godleski, Carmen J. Marsit, Jennifer L. Longacker, Margaret Karagas, Margaret Wrensch, Ru-Fang Yeh, Heather H. Nelson, Joe Wiemels, Shichun Zheng, John Wiencke, Raphael Bueno, David J. Sugarbaker, and Karl T. Kelsey Epigenetic alteration profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome

Brock C. Christensen¹, E.A. Houseman², John J. Godleski¹, Carmen J. Marsit³, Jennifer L. Longacker⁴, Margaret Karagas⁵, Margaret Wrensch⁶, Ru-Fang Yeh⁷, Heather H. Nelson⁸, Joe Wiemels⁷, Shichun Zheng⁶, John Wiencke⁶, Raphael Bueno⁹, David J. Sugarbaker⁹, and Karl

T. Kelsey^{3,10}

- ¹ Department of Environmental Health Harvard School of Public Health, Boston, Massachusetts 02115
- ² Department of Work Environment University of Massachusetts Lowell, Lowell, Massachusetts 01854
- ³ Department of Pathology and Laboratory Medicine Brown University, Providence, Rhode Island 02912
- ⁴ Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
- ⁵ Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756
- ⁶ Department of Neurological Surgery
 ⁷ Department of Epidemiology and Biostatistics University of California San Francisco, San Francisco, California 94143
- ⁸ Division of Epidemiology and Community Health University of Minnesota School of Public Health, Minneapolis, Minnesota 55455
- ⁹ Division of Thoracic Surgery Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 022115
- ¹⁰ Department of Community Health, Center for Environmental Health and Technology Brown University, Providence, Rhode Island 02912

Abstract

Cancers originate through clonal alterations in both the cellular genome and epigenome. While many human carcinogens are known mutagens, the mechanisms of action of non-mutagenic carcinogens such as asbestos, remain poorly characterized. We have studied mesothelioma, a rare but extremely fatal and costly disease caused by asbestos and known to have limited numbers of genetic mutations aiming to characterize the relationships among gene-locus specific methylation silencing of tumor-associated genes, disease status, asbestos burden, and survival. 1505 CpG loci associated with 803 cancer-related genes were studied in 158 pleural mesotheliomas and 18 normal pleura. Classifying samples based upon CpG methylation profile with a mixture model approach, methylation classes discriminated tumor from non-tumor pleura (permutation test P < 0.0001). After false-discovery rate correction, 969 CpG loci were independently associated with disease status (Q-value < 0.05), demonstrating that utilizing profiles of methylation is a powerful method for differentiating disease from normal tissue. Among tumors (n=158), methylation class membership was significantly associated with lung tissue asbestos body burden (P < 0.03), and significantly predicted survival (likelihood ratio P < 0.01). Consistent with prior work, asbestos burden was associated with an increased risk of death (HR = 1.4, 95% CI, 1.1 - 1.8). Our results have shown that methylation profiles powerfully differentiate diseased pleura from nontumor pleura, and that asbestos burden and methylation profiles are independent predictors of mesothelioma patient survival. We have also shown that cellular epigenetic dysregulation is a critical mode of action for asbestos in the induction of pleural mesothelioma.
Introduction

A central tenet of cancer biology states that cancer is clonal, with tumors arising as the result of expansion of increasingly dysregulated cells. This insight yielded a now well known paradigm that selective expansion of cells with a growth advantage occurs in an ordered fashion, driven primarily by genetic changes (Fearon and Vogelstein 1990). This model has expanded to now include the thesis that cancers also evolve a "mutator phenotype" and become malignant as a result of somatic genetic events (Loeb 1991). While this is almost certainly true of some cancers, particularly those induced by well characterized mutagens (e.g. tobacco smoke and ionizing radiation), other known human carcinogens are not mutagenic (or are very poor mutagens) and may be less prone to induce cancers via this mechanism. Asbestos, which is known to induce mesothelioma, is an example of a nonmutagenic carcinogen. In the case of carcinogens such as asbestos, it may be that dysregulation of the somatic epigenome is equally, if not more crucial for cancer development.

Aberrant epigenetic events, including DNA hypermethylation-induced gene silencing, are well recognized as important contributors to carcinogenesis. Methylation associated gene silencing occurs when certain cytosines in specific clustered regions primarily located in gene promoters are hypermethylated. These regulatory CpG islands often occur in tumor suppressor genes and are thought to remain largely unmethylated in noncancerous cells. Approximately half of all human genes contain CpG islands and are, therefore, potentially subject to this type of aberrant silencing (Bird 2002; Jones and Baylin 2002). Recent technologic advances allow for the simultaneous resolution of hundreds of specific,

phenotypically defined cancer-related methylation events, providing a platform for the rapid epigenetic profiling of gene silencing in human tumors (Bibikova, Lin et al. 2006).

Malignant pleural mesothelioma is a rapidly fatal malignancy associated with asbestos exposure in approximately 80% of patients (Tammilehto, Maasilta et al. 1992; Robinson and Lake 2005). In the United States, Great Britain, and Japan, over 5000 cases occur annually and median survival of patients with pleural mesothelioma is less than one year (Pelin, Hirvonen et al. 1994; Price 1997; Morinaga, Kishimoto et al. 2001; Roushdy-Hammady, Siegel et al. 2001; Price and Ware 2004). The economic burden of treating this disease and the litigation associated with asbestos exposure is estimated to exceed \$265 billion over the next four decades in the United States (Bhagavatula, Moody et al. 2001). Despite the decline in asbestos use among industrialized nations, the incidence of mesothelioma continues to rise, and it is not expected to peak until 2020, as disease latency can be as long as fifty years (Peto, Decarli et al. 1999; Kukreja, Jaklitsch et al. 2004). Importantly, asbestos is currently mined and exported throughout the world, with heavy use evident in developing nations such as China, India, and Central America (Joshi and Gupta 2004; Kazan-Allen 2005). Asbestos-containing products are still imported to the U.S., and many asbestos exposure hazards remain from earlier applications; one well publicized example being dust from the World Trade Center towers collapse in New York City (Landrigan, Lioy et al. 2004). A more complete understanding the molecular-genetic consequences of asbestos exposure and the mechanism of action of these mineral fibers in inducing mesothelioma is critically needed to develop more effective approaches for identifying and treating this devastating disease.

The causal link between asbestos and pleural mesothelioma has been widely accepted since 1960 (Wagner, Sleggs et al. 1960), and the carcinogenic mechanisms of asbestos have been investigated in earnest since that time; establishing that asbestos fibers are not point mutagens, but rather both clastogenic and cytotoxic in vitro (Kelsey, Yano et al. 1986; Jaurand 1997). Additionally, methylation-induced tumor suppressor gene silencing has been observed in recent studies of mesothelioma (Ohta, Shridhar et al. 1999; Murthy, Shen et al. 2000; Toyooka, Pass et al. 2001; Hirao, Bueno et al. 2002; Toyooka, Carbone et al. 2002; Wong, Zhou et al. 2002; Lee, He et al. 2004; Shivapurkar, Toyooka et al. 2004; He, Lee et al. 2005; Shigematsu, Suzuki et al. 2005; Suzuki, Toyooka et al. 2005; Tsou, Shen et al. 2005; Tsou, Galler et al. 2007; Christensen, Godleski et al. 2008) leading to the hypothesis that asbestos fibers contribute to epigenetic silencing of tumor suppressor genes in this disease. Consistent with this, Tsou et al. observed a significant association between self-reported asbestos exposure and methylation at the MT1A, and MT2A gene loci in mesotheliomas (Tsou, Galler et al. 2007). Concomitantly, work in our laboratory, using quantitative asbestos body counts as a measure of asbestos exposure burden, revealed an association between cell cycle control tumor suppressor gene methylation and increased asbestos burden in mesothelioma (Christensen, Godleski et al. 2008).

To comprehensively investigate aberrant tumor-specific, phenotypically relevant methylation events in pleural mesothelioma, we profiled 158 tumors and 18 non-tumorigenic parietal pleura samples for methylation at 1505 CpG dinucleotides associated with 803 cancer-related genes using the Illumina GoldenGate[®] methylation bead array. We have definitively delineated the relationship between a comprehensive, phenotypically important

CpG methylation profile and disease status, in addition to defining the tumor methylation profiles associated with patient clinical course and asbestos exposure.

Materials and methods

Study population

Tumor material was obtained following surgical resection at Brigham and Women's Hospital through the support of the International Mesothelioma Program. Similarly, grossly non-tumorigenic parietal pleura samples were taken as residual tissue during extrapleural pneumonectomy from uninvolved anatomic sites. All patients provided informed consent under the approval of the appropriate Institutional Review Boards. Clinical information, including histologic diagnosis was obtained from pathology reports. Each patient was assessed for history of exposure to asbestos as well as additional demographic and environmental data by obtaining their medical and occupational history with an in-person questionnaire or interview. Additionally, we quantified asbestos bodies in samples of lung tissue from multiple sites in the resected lung (De Vuyst, Karjalainen et al. 1998) as previously described (Churg and Warnock 1977). Each tumor was pathologically examined and the amount of tumor in every sample estimated by direct microscopic evaluation and recorded as the percent tumor for that specimen. Patients were followed for survival using the National death index and last known clinic visit.

Methylation analysis

Tumor and non-tumor pleural DNA was extracted from frozen tissue using the QIAamp DNA mini kit according to the manufacturer's protocol (Qiagen, Valencia, CA). DNA was modified by sodium bisulfite to convert unmethylated cytosines to uracil using the EZ DNA Methylation Kit (Zymo Research, Orange, CA) according to the manufacturer's protocol. Illumina GoldenGate[®] methylation bead arrays were used to simultaneously interrogate 1505 CpG loci associated with 803 cancer-related genes. Bead arrays have a similar sensitivity as quantitative methylation-specific PCR and were run at the UCSF Institute for Human Genetics, Genomics Core Facility according to the manufacturer's protocol and as described by Bibikova *et al* (Bibikova, Lin et al. 2006).

Statistical analysis

BeadStudio Methylation software from the array manufacturer Illumina (SanDiego, CA) was used for dataset assembly. All array data points are represented by fluorescent signals from both M (methylated) and U (unmethylated) alleles, and methylation level is given by $\beta = (\max(M, 0))/(|U| + |M| + 100)$, the average methylation (β) value is derived from the ~30 replicate methylation measurements and a Cy3/Cy5 methylated/unmethylated ratio. At each locus for each sample the detection *P*-value was used to determine sample performance, three samples (2%) with >25% of loci having a detection *P*-value > 1e-5 were dropped from analysis. Similarly, CpG loci with a median detection *P*-value > 0.05 (n=8, 0.5%), were eliminated from analysis.

Subsequent analyses were carried out using the R software (R Development 2007). For exploratory and visualization purposes, hierarchical clustering was performed using R function *hclust* with Manhattan metric and average linkage. For inference, data were clustered using a mixture model (Siegmund, Laird et al. 2004) with a mixture of beta distributions (Ji, Wu et al. 2005),and the number of classes was determined by recursively splitting the data via 2-class models, with Bayesian information criterion (BIC) used at each potential split to decide whether the split was to be maintained or abandoned (Fraley and Raftery 2002; Houseman, Coull et al. 2006; Houseman, Christensen et al. 2008). Permutation tests (running 10,000 permutations) were used to test for association with methylation class by generating a distribution of the test statistic for the null distribution for comparison to the

observed distribution. For continuous variables, the permutation test was run with the Kruskal-Wallis test statistic. For categorical variables we used a Mutual information test statistic; (Yao 2003) equivalent to a likelihood ratio test comparing the saturated model for a contingency table against a model that assumes independent margins. Significant associations from permutation tests were controlled for potential confounders where appropriate using logistic regression with methylation classes and potential confounders and a likelihood ratio test of the model with and without methylation classes. For survival analyses, Cox proportional hazards models were utilized, and likelihood ratio tests were used to examine the significance of inclusion of the methylation classes in the models.

Associations between sample type, or covariates such as age or gender and methylation at individual CpG loci were tested with a generalized linear model (GLM). The beta-distribution of average beta values was accounted for with a quasi-binomial logit link with an estimated scale parameter constraining the mean between 0 and 1, in a manner similar to that described by Hsuing *et al.* (Hsiung, Marsit et al. 2007). CpG loci where an *a priori* hypothesis existed were tested independently. In contrast, array-wide scanning for CpG loci associations with sample type or covariate used false discovery rate correction and Q-values computed by the *qvalue* package in R.(Storey, Taylor et al. 2004)

Results

To characterize the epigenetic profile of mesothelioma and non-tumorigenic parietal pleura we used the Illumina GoldenGate[®] bead array that simultaneously interrogates 1505 CpG sites associated with 803 cancer-related genes to generate a methylation value based upon ~30 replicate measurements for each locus in each sample. In this study GoldenGate[®] arrays were used to assess methylation in 158 incident cases of mesothelioma and 18 non-tumorigenic parietal pleura specimens. Exposure, demographic and tumor characteristic data for these samples are presented in Table 4.1.

	Mesothelioma patients	Pleura donors
Gender, n (%)		
Female	38 (24)	4 (22)
Male	120 (76)	14 (78)
Age		
Range	30 - 80	38 – 77
Mean (sd)	62 (9.8)	58 (11.3)
Histology, n (%)		
Epithelioid	109 (69)	-
Mixed	44 (28)	-
Sarcomatoid	5 (3)	-
Asbestos exposure, n (%)		
Yes	112 (74)	13 (72)
No	39 (26)	5 (28)
Log Asbestos Body		
Available n (%)	108 (68)	-
Range	0 - 5.5	-
Mean (sd)	2.16 (1.18)	

Table 4.1. Mesothelioma and non-tumor pleural sample demographic data

Array methylation data were first explored with unsupervised hierarchical clustering using Manhattan distance and average linkage for the 750 most variable autosomal CpG loci (Figure 4.1).

Figure 4.1. Unsupervised clustering of average beta values in tumor and non-tumor pleura. Using the R software package normal tissue sample average beta values were subjected to unsupervised hierarchical clustering based on Manhattan distance and average linkage. Each column represents a sample and each row represents a CpG locus (750 most variable autosomal loci). Above the heatmap blue indicates a tumor sample, and purple indicates a non-tumor pleural sample. In the heat map green = average beta of zero, or unmethylated, and red = average beta of one, or methylated

Striking differences between the epigenetic profiles of mesothelioma and non-tumor pleura are observed, with almost perfect clustering of epigenetic profiles based on disease status. Next, in a univariate approach, we tested all CpG loci individually for an association between methylation and disease status, and 969 CpG loci had methylation levels that differed (Q <

0.05) comparing tumor and non-tumor pleura following FDR correction. Of these, 727 loci associated with 493 genes had enhanced methylation in non-tumor pleura, and 242 loci associated with 153 genes had more methylation in the tumors (Supplemental Table S1). Since so many loci were differentially methylated between tumor and non-tumor pleura, we next applied a modified model-based form of unsupervised clustering known as mixture modeling. This approach built classes of samples based on profiles of methylation with data from all autosomal loci using a mixture of beta distributions to recursively split the tumors into parsimoniously differentiated classes (Siegmund, Laird et al. 2004; Shen, Toyota et al. 2007; Siegmund, Connor et al. 2007). All posterior class membership probabilities were numerically indistinct from 0 or 1. Applying a beta mixture model to methylation data from all autosomal loci in tumors and non-tumor pleura returned eleven methylation classes, their average methylation profiles, and their sample type distributions (Figure 4.2). Methylation class membership was a highly significant predictor of diseased versus non-diseased tissue (permutation P < 0.0001). Among the 11 classes in the model, 9 classes perfectly captured only tumor or only normal, and there were 2 methylation classes containing both tumor and normal samples.

We next restricted our analyses to tumors, (n = 158) first applying our beta mixture model approach, and Figure 4.3 shows the seven methylation classes that resulted. This figure also displays the distributions of gender, histology, and asbestos body counts by methylation class. Methylation class membership was not a significant predictor of patient gender or tumor histology (data not shown).

Figure 4.3. Beta mixture model of methylation profiles in pleural mesothelioma. Methylation average β is green for unmethylated and red for methylated. Methylation profile classes are stacked in rows separated by yellow lines, and class height corresponds to the number of samples in each class. Class methylation at each locus is a mean of methylation for all samples within a class. On the left, bar charts show proportions for gender and tumor histology among samples within each class. On the right, box plots of log asbestos body counts for each class. Controlling for gender, methylation class membership predicts asbestos burden (P < 0.03).

Again, methylation profile class membership was not associated with the amount of tumor in the sample. However, methylation class membership significantly predicted lung asbestos body count (permutation P < 0.04). Since men with pleural mesothelioma have higher asbestos body counts compared to women (P < 0.0001) (Christensen, Godleski et al. 2008) we controlled for gender, and methylation class membership remained a significant predictor of asbestos burden (likelihood ratio test P < 0.03). Based upon prior published work, specific CpG loci were tested for associations between methylation and asbestos body counts; consistent with our prior data, (Christensen, Godleski et al. 2008) tumor methylation average β values at CDKN2A (P < 0.02), CDKN2B (P < 0.02), and RASSF1 (P < 0.03) were significantly and positively associated with asbestos body counts. In addition, methylation of MT1A (previously reported as asbestos exposure-associated by Tsou et al. (Tsou, Galler et al. 2007)) was significantly positively associated with asbestos burden; promoter associated CpG49 (P < 0.04), and exonic CpG13 (P < 0.02). When testing all autosomal loci for an association between methylation and asbestos burden using the MTA1 promoter CpG 49 Qvalue (Q = 0.32) as a cutoff, there were 110 loci with an association between methylation status and asbestos burden (Supplemental Table S2). The vast majority of these 110 loci (94%) had a positive correlation between CpG methylation and asbestos body counts, indicating gene silencing was the overwhelming dominant phenotype associated with asbestos associated epigenetic change.

Lastly, we examined the relationships between methylation profiles and patient outcome using Cox proportional hazards models of survival controlling for age, gender, and tumor histology. In a proportional hazards model including all cases (n = 158), women had half the risk of death of men (HR = 0.5, 95% CI, 0.3 – 0.96), and patients with mixed

histology tumors were at greater risk of death compared to those with epithelial tumors (HR = 2.7, 95% CI, 1.7 – 4.4). Importantly, methylation class membership was also a significant predictor of patient outcome (P < 0.01). In particular, membership in methylation classes four and seven were both independently associated with a significant 3-fold increased risk of death compared to the class with the lowest median asbestos count (95% CIs, class four: 1.4 – 7.0, class seven: 1.3 - 7.4) (Table 4.2).

Table 4.2. Patient gender, tumor histology and methylation profile class membership predict

· · · · · · · · · · · · · · · · · · ·	n (%)			
Co-Variate	Total n=158	HR	95% CI	p-value
Age, mean (sd)	62 (9.8)	1.02	1.0 - 1.05	0.09
Gender				
Male	120 (76)	1.0 (reference)	- .	-
Female	38 (24)	0.5	0.3 - 0.96	< 0.04
Histology				
Epithelial	109 (69)	1.0 (reference)	-	-
Mixed	44 (28)	2.7	1.7 - 4.4	< 0.0001
Sarcomatoid	5 (3)	2.8	0.95 - 8.2	0.06
Methylation Class				
2	24 (15)	1.0 (reference)	-	-
1	22 (14)	1.4	0.6 - 3.4	0.47
3	28 (18)	0.9	0.4 - 2.0	0.75
4	24 (15)	3.1	1.4 - 7.0	< 0.01
5	24 (15)	1.4	0.6 - 3.5	0.44
6	17 (11)	2.0	0.8 - 5.4	0.16
7	19 (12)	3.1	1.3 - 7.4	< 0.01

patient survival in pleural mesothelioma.

Controlled for all variables in table, model log liklihood P < 0.01Class numbers are 1 to 7, top to bottom from figure 4.3 Where data were available (n = 108), and after adjustment for methylation class membership, asbestos burden was associated with a significant 1.4-fold increased risk of death (95% CI, 1.1 - 1.8) (Table 4.3). In this model, membership in methylation class four remained associated with a significant, nearly 3-fold increased risk of death (HR = 2.8, 95% CI, 1.1 - 7.1). Again, in this model including asbestos exposure, likelihood ratio tests indicate that methylation classes were significant predictors of patient outcome (P < 0.005).

 Table 4.3. Asbestos burden and methylation profile class membership predict patient survival in pleural mesothelioma.

	n (%)			
Co-Variate	Total <u>n=108</u>	HR	95% CI	p-value
Age, mean (sd)	61 (9.5)	1.03	1.0 - 1.1	0.18
Gender				
Male	84 (78)	1.0 (reference)	-	-
Female	24 (22)	1.5	0.6 - 3.5	0.38
Histology				
Epithelial	74 (68)	1.0 (reference)	-	-
Mixed	31 (29)	2.1	1.2 - 3.8	< 0.02
Sarcomatoid	3 (3)	1.2	0.3 - 5.2	0.83
Asbestos burden	2.2 (1.2)	1.4	1.1 - 1.8	< 0.04
Methylation Class				
2	17 (16)	1.0 (reference)	-	-
1	10 (9)	0.5	0.1 - 2.2	0.37
3	19 (18)	0.4	0.1 - 1.2	0.11
4	24 (22)	2.8	1.1 - 7.1	< 0.03
5	17 (16)	0.9	0.3 - 2.8	0.89
6	11 (10)	1.2	0.3 - 4.8	0.79
7	10 (9)	1.7	0.6 - 5.0	0.36

Controlled for all variables in table, model log liklihood P < 0.005

Class numbers are 1 to 7, top to bottom from figure 4.3

Discussion

Exposure to asbestos is the single most important risk factor for pleural mesothelioma and prior research has established that somatic mutations (Sugarbaker, Richards et al. 2008) and alterations in gene expression (Gordon, Rockwell et al. 2005) are a feature of this disease. Interestingly, relatively few pathologically important mutations arise in this cancer, and there is no characteristic somatic genetic change that can be attributed to the action of asbestos (Sugarbaker, Richards et al. 2008). Further, although there is consensus that gene expression (at the mRNA level) is significantly altered in mesothelioma, there is no gene expression signature representative of the action of asbestos in this disease, and there remains debate about the clinical utility of mRNA expression profiling (Gordon, Jensen et al. 2003; Gordon, Rockwell et al. 2005; Lopez-Rios, Chuai et al. 2006). Our work sought to definitively characterize phenotypically important alterations in the epigenome of mesothelioma. We enumerated the epigenetic status of over 800 known cancer-related genes that stably control mRNA expression; comparing normal pleura with mesotheliomas. Our findings indicate that an extremely large number of loci are epigenetically altered in mesothelioma, that asbestos exposure is associated with the degree of epigenetic alteration, and finally, that profiles of gene silencing are associated with clinical outcome. This work demonstrates that the epigenome is a primary target of asbestos in the genesis of mesothelioma.

Precisely why epigenetic alterations are a prominent feature of pleural mesothelioma is not clear. However, it is well known that chronic inflammation is a primary tissue response to asbestos exposure (Moalli, MacDonald et al. 1987; Antony 2003; Sabo-Attwood, Ramos-Nino et al. 2005). Epigenetic alterations have been associated with inflammation in colon

cancer, and it has been suggested that inflammation-related epigenetic alterations are common in human cancers (Issa, Ahuja et al. 2001; Issa 2008). Infiltrating macrophages, neutrophils, and eosinophils have been observed at sites of fiber deposition; these cells are known to generate reactive oxygen, and nitrogen, and to induce the release of peroxidases (Moalli, MacDonald et al. 1987; Quinlan, Marsh et al. 1994; Macdonald and Kane 1997). Treatment of human mesothelial cells with crocidolite asbestos has been shown to increase reactive oxygen species and oxidized DNA residues such as 8-oxoguanine (Chen, Marsh et al. 1996). Further, it has been reported that 5-hydroxymethylcytosine can be generated by oxidation of 5-methylcytosine (Penn, Suwalski et al. 1972; Masuda, Shinoara et al. 1975). Both 5-methylcytosine adjacent to 8-oxoguanine, and 5-hydroxymethylcytosine have been shown to inhibit binding of methyl-CpG binding protein 2, a critical epigenetic regulator that recruits cytosine methyltransferases and histone deacetylases (Valinluck, Tsai et al. 2004). It is also known that 5-hydroxymethylcytosine is not recognized as 5-methylcytosine by the maintenance methyltransferase DNMT1, and hence, may lead to aberrant loss of methylation during cell replication (Valinluck and Sowers 2007). Additional base alterations occur via neutrophil and eosinophil peroxidase-derived HOCl and HOBr which can react with DNA to form 5-chlorocytosine and 5-bromocytosine respectively (Henderson, Byun et al. 2003). These halogenated cytosines can be mistaken by DNMT1 as 5-methylcytosine during replication, thus providing a potential mechanism for asbestos-related, inflammation-induced aberrant hypermethylation (Valinluck and Sowers 2007). This is consistent with our data suggesting that asbestos burden (and the resultant inflammatory response) is associated with epigenetic alterations. Furthermore, the decades-long latency of MPM would allow ample

time for cellular turnover and selection of cells with altered epigenetic programs that favor survival and deregulated proliferation.

We also found that epigenetic profiles differentiate tumor from non-tumor pleura (P < P0.0001). Similarly, a genome-wide approach profiling of gene expression at the mRNA level in mesothelioma has demonstrated significant differential expression of over 600 genes between mesothelioma and non-tumor pleura, although the precise pattern of gene expression differs in the hands of different investigators (Gordon, Rockwell et al. 2005; Lopez-Rios, Chuai et al. 2006). Epigenetic gene inactivation is inherently more stable and less prone to variability than measures of mRNA, making our approach for differentiating tumors from non-tumor pleura likely more reproducible. Although our method differentiates tumors from non-tumor pleura extremely well, there remained two methylation profile classes with a minor mixture of tumor and non-tumor samples. It is clear that "contaminating" non-tumor tissue, or samples containing a lower percent tumor cannot explain this result, as we were able to reject this based upon direct observation of the amount of tumor in each specimen. Consequently, it may be that the relative epigenetic similarity between certain tumors and non-tumor pleura is explained by a difference in the prevalence of somatic genetic aberrations (such as gene deletions) among these tumors. In other words, tumors resembling non-tumor pleura epigenetically may harbor significantly greater genetic alterations (relative to more epigenetically divergent tumors) that contribute to their malignant phenotype. An integrative genomics approach using common tumor sets for both epigenetic alteration profiling and genome-wide copy number alteration profiling will begin to address this question.

Hundreds of loci had different methylation levels between tumor and non-tumor pleura after correcting for multiple comparisons ($Q \le 0.05$). Some of the pathways and processes whose genes are differentially methylated include epigenetic regulation, cell cycle control, and inflammation, among others. For instance, *HIC1* was hypermethylated in tumors, which may prevent its transcriptional repression of the histone deacetylase SIRT1, and DNMT3B had significantly lower methylation in tumors, suggesting epigenetic dysregulation. Cell cycle control genes WEE1 and RASSF1 both had significantly higher methylation in tumors, suggesting uncontrolled proliferative potential, a hallmark of cancer (Hanahan and Weinberg 2000). Another hypermethylated gene in tumors was ASB4; a SOCS box-containing protein that inhibits c-Jun N-terminal kinases, is thought to contribute to chronic inflammation (Johnson and Nakamura 2007; Li, Chai et al. 2007). Among tumors, JAK2 had significantly decreased methylation, and concomitant silencing of SOCS genes may then result in increased, or constitutive STAT activation, which is a recognized inflammation-associated mechanism of tumor initiation and promotion (Yoshimura, Naka et al. 2007). In addition, HOXA9 was hypermethylated in tumors; HOXA9 is an inhibitor of NF-kB-dependent activation of leukocyte adhesion molecules ICAM-1, VCAM-1 and Eselectin which recruit leukocytes, exacerbating the inflammatory response (Trivedi, Patel et al. 2007).

At the same time, it is tenable to posit that, although many genes harbor altered epigenetic states, only a small number of genes with epigenetic alterations are chiefly responsible for the phenotypic differences between tumor and normal tissue, and between more deadly mesothelioma compared with less deadly forms. However, if relatively few "epigenetic gatekeepers" determine phenotype, there must be a very large number of genes

that are inactivated consequent to the clonal evolution of the tumor; this may be analogous to 'hitchhiker' mutations that arise during tumor clonal expansion. Alternatively, a 'hit' at a locus essential for epigenetic regulation, the chronic inflammatory process, or altered tumor metabolism, for example, may induce a change in overall epigenetic regulation that results in the targeting and aberrant methylation of many genes in a wholesale fashion. It is not possible to directly distinguish the alternative explanations of our data.

Among the 158 mesotheliomas studied, seven distinct methylation profile classes were identified. Previous genome-wide mRNA expression analysis of mesotheliomas was able to define two distinct subclasses of tumors that loosely correlated with histology (Gordon, Rockwell et al. 2005). Although our epigenetic profiling data revealed more tumor subclasses, the genome-wide approach using mRNA expression as an outcome encompassed over ten-times as many loci, and used fewer tumors, both of which potentially decreased the power to resolve tumor subclasses compared to our larger sample set restricted to cancerassociated loci. We found that methylation profiles were associated with asbestos body burden in an analysis controlling for gender (P < 0.03), again suggesting asbestos-associated inflammation as a mechanism driving tumors into distinct epigenetic subclasses. There were also distinct methylation profile classes comprised of tumors with similar asbestos burden distributions, arguing that asbestos burden per se does not account for all of the observed epigenetic alterations in mesothelioma. However, in the context of a decades-long latency and a non-specific, asbestos-related chronic inflammation state, alterations of different epigenetic gatekeeper genes could occur at different stages in tumorigenesis and tumor progression. Furthermore, specific genes, or gene pathways, may be more likely to be selected for, or more susceptible to asbestos-related epigenetic alterations; consistent with

this, associations between CpG methylation of specific genes and asbestos previously reported by our group and others were confirmed in this study (Tsou, Galler et al. 2007; Christensen, Godleski et al. 2008). Here, we extended these findings to include several apoptosis-related genes such as *AATK*, *CASP2*, *CASP10*, and *PYCARD*.

Finally, overall methylation profile class membership was a significant, independent predictor of patient survival (P < 0.01), suggesting that epigenetic dysregulation is strongly associated with disease progression. Although general epigenetic deregulation may be highly correlated with disease prognosis, we cannot exclude epigenetic events at specific loci as responsible for predicting survival. Consistent with our previous finding, we confirmed that an increased asbestos burden is a significant, independent predictor of reduced survival in pleural mesothelioma (Christensen, Godleski et al. 2008).

In summary, our data show that epigenetic alterations are extraordinarily common in mesothelioma and discriminate the malignant phenotype from normal pleura. Epigenetic changes are also significantly associated with asbestos burden and significantly predict clinical outcome. Hence, our data indicate that phenotypically important somatic epigenetic modification is a major mode of action of asbestos in mesothelioma, strongly suggesting that investigation of the underlying mechanism responsible will assist in diagnosis, assessment of prognosis and design of therapies for this rare, but rapidly fatal disease.

References

- Antony, V. B. (2003). "Immunological mechanisms in pleural disease." <u>Eur Respir J</u> 21(3): 539-44.
- Bhagavatula, R., R. Moody, et al. (2001). "Asbestos: a moving target." <u>Best's Review</u> **102**(5): 85-90.
- Bibikova, M., Z. Lin, et al. (2006). "High-throughput DNA methylation profiling using universal bead arrays." <u>Genome Res</u> 16(3): 383-93.
- Bird, A. (2002). "DNA methylation patterns and epigenetic memory." <u>Genes Dev</u> 16(1): 6-21.
- Chen, Q., J. Marsh, et al. (1996). "Detection of 8-oxo-2'-deoxyguanosine, a marker of oxidative DNA damage, in culture medium from human mesothelial cells exposed to crocidolite asbestos." <u>Carcinogenesis</u> 17(11): 2525-7.
- Christensen, B. C., J. J. Godleski, et al. (2008). "Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma." <u>Carcinogenesis</u>.
- Christensen, B. C., J. J. Godleski, et al. (2008). "Asbestos burden predicts survival in pleural mesothelioma." <u>Environ Health Perspect</u> **116**(6).
- Churg, A. and M. L. Warnock (1977). "Correlation of quantitative asbestos body counts and occupation in urban patients." <u>Arch Pathol Lab Med</u> **101**(12): 629-34.
- De Vuyst, P., A. Karjalainen, et al. (1998). "1998 ERS Task Force Report Guidelines for mineral fibre analyses in biological samples: report of the ERS working group." <u>Eur</u> <u>Respir J</u> 11: 1416-1426.
- Fearon, E. R. and B. Vogelstein (1990). "A genetic model for colorectal tumorigenesis." <u>Cell</u> **61**(5): 759-67.
- Fraley, F. and A. Raftery (2002). "Model-based clustering, discriminant analysis, and density estimation." J Am Stat Assoc 97: 611-631.
- Gordon, G. J., R. V. Jensen, et al. (2003). "Using gene expression ratios to predict outcome among patients with mesothelioma." J Natl Cancer Inst **95**(8): 598-605.
- Gordon, G. J., G. N. Rockwell, et al. (2005). "Validation of genomics-based prognostic tests in malignant pleural mesothelioma." <u>Clin Cancer Res</u> 11(12): 4406-14.
- Gordon, G. J., G. N. Rockwell, et al. (2005). "Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling." <u>Am J Pathol</u> **166**(6): 1827-40.

Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." Cell 100(1): 57-70.

- He, B., A. Y. Lee, et al. (2005). "Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells." <u>Cancer Res</u> **65**(3): 743-8.
- Henderson, J. P., J. Byun, et al. (2003). "Phagocytes produce 5-chlorouracil and 5bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue." J Biol Chem 278(26): 23522-8.
- Hirao, T., R. Bueno, et al. (2002). "Alterations of the p16(INK4) locus in human malignant mesothelial tumors." <u>Carcinogenesis</u> 23(7): 1127-30.
- Houseman, E. A., B. C. Christensen, et al. (2008). "Model-based clustering of methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions." <u>Bioinformatics</u> **Submitted**.
- Houseman, E. A., B. A. Coull, et al. (2006). "Feature-specific penalized latent class analysis for genomic data." <u>Biometrics</u> 62(4): 1062-70.
- Hsiung, D. T., C. J. Marsit, et al. (2007). "Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma." <u>Cancer Epidemiol</u> <u>Biomarkers Prev</u> 16(1): 108-14.
- Issa, J. P. (2008). "Cancer prevention: Epigenetics steps up to the plate." <u>Cancer Prevention</u> <u>Research</u>.
- Issa, J. P., N. Ahuja, et al. (2001). "Accelerated age-related CpG island methylation in ulcerative colitis." <u>Cancer Res</u> 61(9): 3573-7.
- Jaurand, M. C. (1997). "Mechanisms of fiber-induced genotoxicity." <u>Environ Health Perspect</u> 105 Suppl 5: 1073-84.
- Ji, Y., C. Wu, et al. (2005). "Applications of beta-mixture models in bioinformatics." <u>Bioinformatics</u> **21**(9): 2118-22.
- Johnson, G. L. and K. Nakamura (2007). "The c-jun kinase/stress-activated pathway: regulation, function and role in human disease." <u>Biochim Biophys Acta</u> 1773(8): 1341-8.
- Jones, P. A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in cancer." <u>Nat Rev Genet</u> **3**(6): 415-28.
- Joshi, T. K. and R. K. Gupta (2004). "Asbestos in developing countries: magnitude of risk and its practical implications." Int J Occup Med Environ Health 17(1): 179-85.
- Kazan-Allen, L. (2005). "Asbestos and mesothelioma: worldwide trends." Lung Cancer 49 Suppl 1: S3-8.

- Kelsey, K. T., E. Yano, et al. (1986). "The in vitro genetic effects of fibrous erionite and crocidolite asbestos." <u>Br J Cancer</u> 54(1): 107-14.
- Kukreja, J., M. T. Jaklitsch, et al. (2004). "Malignant pleural mesothelioma: overview of the North American and European experience." <u>Thorac Surg Clin</u> 14(4): 435-45.
- Landrigan, P. J., P. J. Lioy, et al. (2004). "Health and environmental consequences of the world trade center disaster." <u>Environ Health Perspect</u> **112**(6): 731-9.
- Lee, A. Y., B. He, et al. (2004). "Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma." <u>Oncogene</u> 23(39): 6672-6.
- Li, J. Y., B. X. Chai, et al. (2007). "Ankyrin repeat and SOCS box containing protein 4 (Asb-4) interacts with GPS1 (CSN1) and inhibits c-Jun NH2-terminal kinase activity." <u>Cell</u> <u>Signal</u> **19**(6): 1185-92.
- Loeb, L. A. (1991). "Mutator phenotype may be required for multistage carcinogenesis." <u>Cancer Res</u> 51(12): 3075-9.
- Lopez-Rios, F., S. Chuai, et al. (2006). "Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction." <u>Cancer Res</u> 66(6): 2970-9.
- Macdonald, J. L. and A. B. Kane (1997). "Mesothelial cell proliferation and biopersistence of wollastonite and crocidolite asbestos fibers." <u>Fundam Appl Toxicol</u> **38**(2): 173-83.
- Masuda, T., H. Shinoara, et al. (1975). "Reactions of hydroxyl radicals with nucleic acid bases and the related compounds in gamma-irradiated aqueous solution." <u>J Radiat Res</u> (Tokyo) **16**(3): 153-61.
- Moalli, P. A., J. L. MacDonald, et al. (1987). "Acute injury and regeneration of the mesothelium in response to asbestos fibers." <u>Am J Pathol</u> 128(3): 426-45.
- Morinaga, K., T. Kishimoto, et al. (2001). "Asbestos-related lung cancer and mesothelioma in Japan." Ind Health **39**(2): 65-74.
- Murthy, S. S., T. Shen, et al. (2000). "Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma." <u>Oncogene</u> **19**(3): 410-6.
- Ohta, Y., V. Shridhar, et al. (1999). "Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma." <u>Cancer</u> 85(12): 2570-6.
- Pelin, K., A. Hirvonen, et al. (1994). "Expression of cell adhesion molecules and connexins in gap junctional intercellular communication deficient human mesothelioma tumour cell lines and communication competent primary mesothelial cells." <u>Carcinogenesis</u> 15(11): 2673-5.

- Penn, N. W., R. Suwalski, et al. (1972). "The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid." <u>Biochem J</u> 126(4): 781-90.
- Peto, J., A. Decarli, et al. (1999). "The European mesothelioma epidemic." <u>Br J Cancer</u> 79(3-4): 666-72.
- Price, B. (1997). "Analysis of current trends in United States mesothelioma incidence." <u>Am J</u> <u>Epidemiol</u> 145(3): 211-8.
- Price, B. and A. Ware (2004). "Mesothelioma trends in the United States: an update based on Surveillance, Epidemiology, and End Results Program data for 1973 through 2003." <u>Am J Epidemiol</u> 159(2): 107-12.
- Quinlan, T. R., J. P. Marsh, et al. (1994). "Oxygen radicals and asbestos-mediated disease." <u>Environ Health Perspect</u> **102 Suppl 10**: 107-10.
- R Development, C. T. (2007). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.
- Robinson, B. W. and R. A. Lake (2005). "Advances in malignant mesothelioma." <u>N Engl J</u> <u>Med</u> 353(15): 1591-603.
- Roushdy-Hammady, I., J. Siegel, et al. (2001). "Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey." Lancet **357**(9254): 444-5.
- Sabo-Attwood, T., M. Ramos-Nino, et al. (2005). "Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestosinduced fibrogenesis." <u>Am J Pathol</u> 167(5): 1243-56.
- Shen, L., M. Toyota, et al. (2007). "Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer." <u>Proc Natl Acad Sci U S A</u> **104**(47): 18654-9.
- Shigematsu, H., M. Suzuki, et al. (2005). "Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies." Int J Cancer **113**(4): 600-4.
- Shivapurkar, N., S. Toyooka, et al. (2004). "Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types." Int J Cancer 109(5): 786-92.
- Siegmund, K. D., C. M. Connor, et al. (2007). "DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons." <u>PLoS ONE</u> 2(9): e895.
- Siegmund, K. D., P. W. Laird, et al. (2004). "A comparison of cluster analysis methods using DNA methylation data." <u>Bioinformatics</u> **20**(12): 1896-904.
- Storey, J., J. Taylor, et al. (2004). "Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach." <u>J Royal Stat Soc</u> Series B(66): 187-205.

- Sugarbaker, D. J., W. G. Richards, et al. (2008). "Transcriptome sequencing of malignant pleural mesothelioma tumors." Proc Natl Acad Sci U S A 105(9): 3521-6.
- Suzuki, M., S. Toyooka, et al. (2005). "Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection." <u>Oncogene</u> **24**(7): 1302-8.
- Tammilehto, L., P. Maasilta, et al. (1992). "Diagnosis and prognostic factors in malignant pleural mesothelioma: a retrospective analysis of sixty-five patients." <u>Respiration</u> 59(3): 129-35.
- Toyooka, S., M. Carbone, et al. (2002). "Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells." <u>Oncogene</u> **21**(27): 4340-4.
- Toyooka, S., H. I. Pass, et al. (2001). "Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma." <u>Cancer Res</u> **61**(15): 5727-30.
- Trivedi, C. M., R. C. Patel, et al. (2007). "Homeobox gene HOXA9 inhibits nuclear factorkappa B dependent activation of endothelium." <u>Atherosclerosis</u> **195**(2): e50-60.
- Tsou, J. A., J. S. Galler, et al. (2007). "DNA methylation profile of 28 potential marker loci in malignant mesothelioma." <u>Lung Cancer</u>.
- Tsou, J. A., L. Y. Shen, et al. (2005). "Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung." <u>Lung Cancer</u> 47(2): 193-204.
- Valinluck, V. and L. C. Sowers (2007). "Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1." <u>Cancer Res</u> 67(3): 946-50.
- Valinluck, V., H. H. Tsai, et al. (2004). "Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2)." <u>Nucleic Acids Res</u> 32(14): 4100-8.
- Wagner, J. C., C. A. Sleggs, et al. (1960). "Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province." <u>Br J Ind Med</u> 17: 260-71.
- Wong, L., J. Zhou, et al. (2002). "Inactivation of p16INK4a expression in malignant mesothelioma by methylation." Lung Cancer **38**(2): 131-6.
- Yao, Y. (2003). Information-theoretic measures for knowledge discovery and data mining <u>Entropy Measures, Maximum Entropy Principle and Emerging Applications</u>. Karmeshu, Springer: 115-136.
- Yoshimura, A., T. Naka, et al. (2007). "SOCS proteins, cytokine signalling and immune regulation." Nat Rev Immunol 7(6): 454-65.

Table S1.Loci with signifiacntly different methylation between tumor and non-tumor
pleura (Q - value ranked)

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
1	ADAMTS12	E52	34	RARB	P60
2	APC	P280	35	RARRES1	P57
3	APP	E8	36	RIPK2	E123
4	BCAM	E100	37	SFN	P248
5	CARD15	P302	38	SHB	P473
6	CCND3	P435	39	SKI	E465
7	CCNE1	P683	40	SMARCA3	P109
8	CSF3	E242	41	SPARC	E50
9	CTNNA1	P382	42	SRC	E100
10	EPHB4	E476	43	TGFA	P558
11	EPS8	E231	44	TGFB2	P632
12	EPS8	P437	45	TGFBR3	E188
13	FANCG	E207	46	TJP2	P330
14	FER	E119	47	TJP2	P518
15	GAS1	E22	48	TNFRSF10B	E198
16	HIC1	P565	49	TRAF4	P372
17	HPSE	P29	50	TRIP6	E33
18	ID1	P880	51	TUBB3	P72 1
19	IL18BP	E285	52	WNT5A	E43
20	IL8	P83	53	YES1	P600
21	ITGA2	P26	54	ACVR2B	E27
22	JAG1	P66	55	BCL3	E7 1
23	LAMB1	E144	56	CASP8	E474
24	MCM2	P24 1	57	CPA4	P961
25	MCM2	P260	58	FES	E34
26	MLH3	P25	59	GATA6	P21
27	MUC1	P191	60	ISL1	E87
28	PCDH1	E22	61	ITGB4	E144
29	PCGF4	P760	62	PPARD	P846
30	PDE1B	E141	63	PTCH	E42
31	PDGFA	P84 1	64	TJP1	P326
32	PRKCDBP	E206	65	WNT2B	P1185
33	PRKCDBP	P352	66	APP	P179

Significantly higher methylation in: Non-tumor pleura, Tumor

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
67	ITGB1	P451	103	FGFR2	P460
68	PDGFRB	P273	104	TSG101	P257
69	IGSF4C	E65	105	CD34	E20
70	TIMP2	P267	106	MCC	E23
71	CDK10	E74	107	PTEN	P438
72	INHA	P1189	108	NTRK3	P636
73	PHLDA2	E159	109	FHIT	P93
74	PLAU	P11	110	GAS1	P754
75	DHCR24	P406	111	EPHB1	E202
76	ITGA6	P298	11 2	IL1B	P829
77	PDGFB	E25	113	TIAMI	P117
78	ERCC1	P354	114	IGF1R	P325
79	RAD54B	P227	115	TMEFF1	E180
80	CD9	E14	116	DAB2IP	E18
81	GNMT	E126	117	APC	E117
82	HPSE	P93	118	EXT1	E197
83	CAVI	P130	119	CTGF	E156
84	INHA	P1144	120	RARRES1	E235
85	EPHB2	P165	121	CCND1	E280
86	CCR5	P630	122	PTPN6	E171
87	GSTP1	seq 38	123	MUSK	P308
88	DSP	P36	124	GRB10	E85
89	LIG4	P194	125	ABL2	P459
90	MYCN	E77	126	ROR2	E112
91	CDK6	P291	127	DDIT3	P1313
92	HOXB13	E21	128	IRF5	P123
93	IGF2R	P396	129	EPHB6	E342
94	ENC1	P484	130	FLT4	E206
95	ACVRIC	P115	131	DST	P262
96	SMO	E57	132	FASTK	P257
9 7	ZMYND10	P329	133	PSIP1	P163
98	EIF2AK2	E103	134	IGFBP5	E144
99	TGFBI	P31	135	CASP6	P230
100	CYP1B1	P212	136	SLC22A2	P109
101	PDGFRB	E195	137	SEMA3B	P110
102	P2RX7	E323	138	PKD2	P287

Rank ^a	GENE	CpG ^b	 Rank ^a	GENE	CpG ^b
139	TESK2	P252	175	PTK7	E317
140	ASB4	E89	176	MLH3	E72
141	ADAMTS12	P250	177	BCAM	P205
142	ITGB4	P517	178	EFNB3	P442
143	GADD45A	P737	179	BCL3	P1038
144	CDH3	E100	180	SEMA3B	E96
145	ROR2	P317	181	PDGFA	P78
146	CASP6	P20 1	182	FLJ20712	P984
147	COL6A1	P425	183	SRC	P164
148	PSCA	P135	184	HTR1B	P107
149	S100A4	P887	185	ABCG2	P178
150	THBS1	P500	186	TNFRSF10C	P7
151	FGFR1	E317	1 87	FVT1	P225
152	NOTCH2	P312	188	KLF5	E190
153	XRCC2	P1077	1 89	HBEGF	P32
154	BMP4	P123	190	TNC	P57
155	COPG2	P298	191	MTIA	P600
156	SLIT2	E 111	192	CDH1	P45
157	МСМ6	E136	193	MAF	E77
158	ITGA2	E120	194	GPX1	E46
159	EPHB3	E0	195	PYCARD	P150
160	VEGFB	P658	196	MLH1	P381
161	FGFR2	P266	197	CSF3	P309
162	CPA4	E20	1 98	STK11	P295
163	GNMT	P197	199	FANCF	P13
164	RASA1	E107	200	IGFBP6	P328
165	FYN	P352	201	IFNGR2	E164
166	PTGS1	P2	202	PLXDC1	E71
167	CDKN1A	E101	203	PTCH2	P568
168	TGFA	P642	204	IL16	P93
169	THPO	P585	205	WNT2B	P1195
170	PTPNS1	E433	206	<i>E2F5</i>	P516
171	FHIT	E19	207	HDAC5	E298
172	PLAUR	E123	208	YES1	P216
173	ST6GAL1	P164	209	LAMC1	P808
174	SPARC	P195	210	TRPM5	P979

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
211	ERCC6	P698	247	TSG101	P139
212	NGFB	E353	248	IL8	E118
213	TGFBI	P173	249	TCF7L2	P193
214	DAPK1	E46	250	CTSH	E157
215	WNT5A	P655	251	SMARCA3	P17
216	<i>TP73</i>	P496	252	COLIAI	P117
217	DIO3	P90	253	BMP3	P56
218	CDH3	P87	254	TRIP6	P1090
219	WRN	E57	255	MGMT	P272
220	INSR	E97	256	GAS7	E148
221	SFTPB	P689	257	PKD2	P336
222	CDK2	P330	258	MMP14	P208
223	LIF	P383	259	ICAM1	P 11 9
224	GPR116	P850	260	COL18A1	P494
225	<i>CD34</i>	P339	261	МСС	P196
226	CDKNIC	P6	262	PCGF4	P92
227	MLF1	P97	263	JAG2	E54
228	HLA-DOA	P191	264	LRP2	E20
229	BAX	E281	265	NFKB2	P709
230	MALTI	P406	266	IL18BP	P51
231	RUNXITI	P103	267	EPHB2	E297
232	DST	E31	268	ABCA1	P45
233	LAMC1	E466	269	THY1	P20
234	KLF5	P13	270	HIC-1	seq 48
235	PLAT	P80	271	CTTN	E29
236	EPO	P162	272	FGFR1	P204
237	SMAD4	P474	273	MLF1	E243
238	ALK	E183	274	JAG2	P264
239	ETS1	E253	275	PTPN6	P282
240	PLAGL1	P334	276	CDC25B	E83
241	DDR1	E23	277	CEACAMI	P44
242	IGFBP3	E65	278	SEMA3F	P692
243	LMTK2	P1034	279	TIMP2	E394
244	OAT	P465	280	DUSP4	P925
245	CAVI	P169	281	NEO1	P1067
246	APC	P14	282	SMARCB1	P220

Rank ^a	GENE	CpG [♭]	Rank ^a	GENE	CpG ^b
283	NOTCH3	P198	319	BMPR2	P1271
284	IFNGR1	P30 7	320	TIMP3	seq 7
285	<i>E2F3</i>	P840	321	CRIP1	P274
286	CASP10	P186	322	GRB10	P496
287	MCAM	P169	323	NRAS	P103
288	DAB2IP	P9	324	IL6	E168
289	P2RX 7	P59 7	325	TFPI2	P9
290	ABO	E110	326	SLC22A3	P634
291	NBL1	P24	327	SMAD2	P708
292	DLL1	P386	328	PTHLH	P757
293	DAPK1	P10	329	CAPG	E228
294	EPHB4	P313	330	BMPR2	E435
295	CLDN4	P1120	331	CSTB	E410
296	EPHA5	E158	332	ASB4	P52
29 7	ITGA6	P718	333	ABCA1	E120
298	DHCR24	P652	334	HHIP	E94
299	MTA1	P478	335	CSK	P740
300	DDB2	P407	336	PTK2B	P673
301	SMARCA4	P362	337	JAK2	P772
302	SNURF	P78	338	MAP3K9	E17
303	IRF7	E236	339	TNFRSF10B	P108
304	NKX3-1	P146	340	WT1	P853
305	ABO	P312	341	PTPRF	E178
306	p16	seq 47	342	S100A12	P1221
307	KRT13	P341	343	CHI3L2	E10
308	TYK2	P494	344	FGF12	E61
309	PTPRG	P476	345	DMP1	E194
310	VAMP8	E7	346	DMP1	P134
311	FOSL2	E384	347	TRIM29	P261
312	LYN	E353	348	TNFRSF10C	E109
313	VIM	P343	349	COMT	E401
314	HLA-DOB	E432	350	EPHA7	P205
315	BMP4	P199	351	CCND1	P343
316	CTSH	P238	352	PGR	P790
317	FGF9	P862	353	TUBB3	P364
318	NEU1	P745	354	TALI	P594

Rank	a GENE	CpG ^b	 Rank ^a	GENE	CpG ^b
355	HDAC11	P556	391	BMPR1A	P956
356	GABRA5	P1016	392	PTPNS1	P301
357	DAPK1	P345	393	EGFR	P260
358	PPP2R1B	P268	394	CDK6	E256
359	FAT	P279	395	PLXDC2	P914
360	PCDH1	P264	396	ERG	E28
361	CHFR	P501	397	EPHA7	E6
362	CSPG2	E38	398	DDR2	E331
363	AHR	P166	399	LOX	P313
364	SFTPC	E13	400	CASP3	P420
365	IL1RN	E42	401	EPM2A	P113
366	FGF9	P1404	402	BMP2	E48
367	JAK3	P156	403	EYA4	P794
368	NGFB	P13	404	TNK1	P22 1
369	BMP3	E147	405	НОХА9	E252
370	ITK	P114	406	SERPINA5	P156
371	MASI	P469	407	GLI3	P453
372	ACVR2B	P676	408	TRIM29	P135
373	SEMA3F	E333	409	AREG	E25
374	RARB	E114	410	GPX3	E178
375	SNRPN	seq 18	411	LEFTY2	P719
376	EFNA1	P7	412	NTRK1	E74
377	PTHLH	E251	413	BCR	P422
378	CRIP1	P 8 74	414	MUC1	E18
379	C4B	P191	415	F2R	P88
380	SHH	P104	416	CTNNA1	P185
381	EDN1	E50	417	GALR1	P80
382	SFTPD	E169	418	RAD50	P191
383	ZMYND10	E77	419	ESR2	P162
384	DDR2	P743	420	MMP9	P237
385	SEPT9	P374	421	MLLT3	E93
386	EGR4	E70	422	ETS1	P559
387	ABL1	P53	423	LOX	P71
388	GFAP	P1214	424	ODC1	P424
389	WEE1	P924	425	PTCH2	E173
390	BIRC5	E89	 426	FLI1	E29

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
427	AHR	E103	463	ALK	P28
428	CSF1	P217	464	ACVR1B	P572
429	FAS	P322	465	COL4A3	P545
430	C4B	E171	466	SH3BP2	E18
431	DAB2	P35	467	TRIM29	E189
432	PALM2-AKAP2	P183	468	IL12B	P1453
433	S100A2	P1186	469	MXI1	P75
434	EFNB3	E17	470	CHD2	P667
435	RARRES1	P426	471	IL1B	P582
436	JUNB	P1149	472	HBII-13	E48
437	FOLR1	E368	473	RRAS	P100
438	GLI2	P295	474	CHFR	P635
439	MYCN	P464	475	EGFR	E295
440	FGF5	E16	476	IL12B	E25
441	NAT2	P11	477	GLI3	E148
442	NDN	E131	478	RAB32	P493
443	TNFSF10	E53	479	TYRO3	P366
444	HIC1	E151	480	TMEFF1	P626
445	APOC1	P406	481	SLC22A3	P528
446	PLAGL1	P236	482	DNAJC15	P65
447	APBA1	E99	483	ABCC5	P444
448	HPN	P374	484	EMR3	P1297
449	HS3ST2	E145	485	TNFRSF10C	P612
450	KRT13	P676	486	HOXA5	P1324
451	IGF2AS	E4	487	MGMT	P281
452	GABRG3	P75	488	NRG1	E74
453	PEG3	E496	489	SLC22A18	P472
454	TBX1	P520	490	EFNA1	P591
455	RIPK3	P124	49 1	SMO	P455
456	NQO1	E74	492	HRASLS	E72
457	SNCG	P98	493	TALI	E122
458	PROM1	P44	494	PTHR1	P258
459	ICAM1	E242	495	MMP7	E59
460	PTGS1	E80	496	THBS2	P605
461	MYLK	E132	497	COL1A1	P5
462	DLC1	P695	498	DSG1	E292

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
499	TMPRSS4	E83	535	EMR3	E61
500	GSTP1	P74	536	IAPP	E280
501	TSP50	E21	537	MAPK4	E273
502	ASB4	P391	538	IHH	P246
503	<i>TP73</i>	E155	539	RIPK4	P172
504	LMO2	P794	540	ERBB2	P59
505	PLA2G2A	E268	541	EMR3	P39
506	FAS	P65	542	EPM2A	P64
507	CD81	P211	543	TUSC3	P85
508	DES	E228	544	CDKN2B	seq 50
509	GABRA5	P862	545	PPARG	E178
510	CPA4	P1265	546	CD34	P780
511	NTSR1	E109	547	TES	E172
512	DSC2	E90	548	CDKN1B	P1161
513	PTGS2	P308	549	KDR	E79
514	PHLDA2	P622	550	SH3BP2	P771
515	CTLA4	P1128	551	MATK	P190
516	CPNE1	P138	552	SEPT9	P58
517	NCL	P1102	553	НОХА9	P1141
518	HOXA11	P698	554	MPO	P883
519	CDH11	P354	555	VAV2	E58
520	MBD2	P233	556	MAGEL2	E166
521	IGFBP7	P297	557	COL18A1	P365
522	TCF4	P175	558	ILIRN	P93
523	PADI4	P1011	559	RAN	P581
524	S100A2	E36	560	TGFB2	E226
525	RIPK3	P24	561	CDH11	E102
526	CHI3L2	P226	562	FRK	P258
527	GRB10	P260	563	DDB2	P613
528	HIF1A	P488	564	PLAGL1	E68
529	BLK	P668	565	HLA-F	E402
530	AXL	P223	566	TNF	P1084
531	SMAD2	P848	567	РОМС	P400
532	FLI1	P620	568	LRRK1	P39
533	MASI	P657	569	WNT10B	P993
534	RAF1	P330	570	CCKBR	P361

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
571	NNAT	P544	607	NOTCH4	P938
572	HSPA2	P162	608	ICAM1	P386
573	SLC22A18	P216	609	HGF	E102
574	COL6A1	P283	610	DNAJC15	E26
575	HBII-13	P991	611	HDAC9	P137
576	HOXB13	P17	612	TEK	P479
577	CYP1B1	E83	613	SPDEF	P6
578	EGF	E339	614	IGF1	E394
579	FGF7	P44	615	MMP3	P16
580	LCN2	P141	616	HOXB2	P99
581	B3GALT5	E246	617	HPN	P823
582	ABCB4	E429	618	OPCML	P7 1
583	ARHGAP9	P260	619	KRT5	E196
584	ACTG2	P346	620	CALCA	P171
585	VAMP8	P114	621	TYRO3	P501
586	HLA-DQA2	P282	622	ALPL	P433
587	LMO1	P169	623	ITPR2	P804
588	GDF10	E39	624	KIT	P405
589	CCL3	P543	625	MAP2K6	E297
590	SPI1	P929	626	MEG3	P235
591	МҮВ	P673	627	SERPINA5	E69
592	ZIM3	P718	628	NRG1	P558
593	TNFRSF10D	P70	629	RET	seq 54
594	SNRP N	seq 12	630	ETV1	P515
595	HLA-DPA1	P28	631	TNFRSF10D	E27
596	ASCL2	E76	632	ZNF215	P7 1
597	PDGFRA	E125	633	ERBB4	P255
598	FN1	P229	634	NOTCH1	P1198
599	ММР9	P189	635	DNMT3B	P352
600	PI3	P274	636	ER	seq a1
601	HOXC6	P585	637	GFAP	P56
602	EGF	P413	638	LCN2	P86
603	PYCARD	P393	639	IL12A	E287
604	NQO1	P345	640	APBA1	P644
605	CTSD	P726	641	AGXT	P180
606	KCNQ1	P546	642	PPAT	E170

Rank	a GENE	CpG ^b	Rank ^a	GENE	CpG ^b
643	CCL3	E53	679	IGF2	P36
644	DUSP4	E61	680	LRRC32	E157
645	ABCG2	P310	681	OSM	P188
646	JAK3	P1075	682	ITK	E166
647	BCL6	P248	683	MAPK12	E165
648	DLC1	P88	684	ABCC2	E16
649	EPHA8	P256	685	KRT1	P798
650	WNT2	P217	686	FGF5	P238
651	SOD3	P460	687	TMEFF1	P234
652	PROK2	E0	688	$U\!NG$	P170
653	BSG	P2 11	689	PWCR1	P357
654	AKT1	P310	690	MMP8	E89
655	MFAP4	P10	691	PECAM1	P135
656	НОХА9	P303	692	MAF	P826
657	NFKB1	P336	693	SEMA3C	P642
658	EPHX1	P1358	694	KLK10	P268
659	ACVR1B	E497	695	TIAM1	P188
660	ATP10A	P524	696	FES	P223
661	RUNX1T1	E145	697	TUBB3	E91
662	TNFRSF1B	P167	698	RAB32	E314
663	GABRG3	E123	699	CASP10	E139
664	NBL1	E205	700	PTPRH	E173
665	SLC5A8	P38	701	ERBB4	P541
666	CTSL	P264	702	FZD9	E458
667	UGT1A1	P564	703	EPHA5	P66
668	TGFB1	P833	704	PLAUR	P82
669	IGF2	P1036	705	TDGF1	P428
670	HDAC9	E38	706	PEG10	P978
671	PENK	P447	707	HLA-DRA	P77
672	GALR1	E52	708	HSD17B12	E145
673	INS	P804	709	IGF1	P933
674	DDR1	P332	710	CSPG2	P82
675	IGF2AS	P203	711	PTHR1	E36
676	OGG1	E400	712	PRSS1	P1249
677	CSF2	P605	713	BCL2L2	E172
678	IL6	P611	714	SIN3B	P607
Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
-------------------	-------------	------------------	-------------------	-----------	------------------
715	IGSF4	P454	751	NR2F6	E375
716	MMP2	E21	752	IL4	P262
717	RIPK1	P744	753	TFPI2	P152
718	FGF1	E5	754	FABP3	P598
719	ETV6	E430	755	SPI1	E205
720	FANCE	P356	756	FGFR4	P610
721	MMP1	P460	757	HIC2	P498
722	PECAMI	E32	758	MMP19	P306
723	MYOD1	E156	759	IFNG	P188
724	CD9	P504	760	TNFRSF10A	P9 1
725	PALM2-AKAP2	P420	761	HHIP	P307
726	IGF2	E134	762	KRAS	E82
727	ZIM2	P22	763	GSTM2	E153
728	WNT1	E157	764	ERCC3	P1210
729	NKX3-1	P871	765	CDKN2A	E121
730	MSH3	E3	766	SFN	E11 8
731	MSH2	P1008	76 7	SOX17	P303
732	MTIA	E13	768	CD86	P3
733	PRSS8	E134	769	AREG	P217
734	TFDP1	P543	770	AATK	E63
735	CSF1R	E26	771	SIN3B	P514
736	EDN1	P39	772	TMEFF2	P210
737	PWCR1	E81	773	SHB	P691
738	LTA	E28	774	WNT10B	P823
739	SRC	P297	775	RBL2	P250
740	IHH	P529	776	MYCL1	P502
741	CDH17	E31	777	TNFRSF1B	E5
742	GJB2	P791	778	CD81	P272
743	ABCB4	P5 1	779	PLXDC1	P236
744	THBS1	E207	780	HCK	P858
745	PDE1B	P263	781	SOX1	P294
746	GPX1	P194	782	MMP7	P613
747	CSF1	P339	783	LEFTY2	P561
748	DNMT2	P199	784	FGF6	P139
749	TGFB3	E58	785	MAP2K6	P297
750	MT1A	P49	786	APBA2	P305

^aBased on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
787	RUNX3	E27	823	CEACAMI	E57
788	SLC14A1	E295	824	MMP9	E88
789	SEMA3A	P343	825	IL10	P85
790	HOXC6	P456	826	РОМС	E254
791	MOS	E60	827	RARA	E128
792	LMO1	E265	828	CXCL9	E268
793	HOXA11	E35	829	ZIM3	E203
794	DES	P1006	830	EIF2AK2	P313
795	SLC5A5	E60	831	CDH11	P203
796	ASCL2	P360	832	TFAP2C	P765
797	USP29	P205	833	MDS1	E45
798	CCNA1	P216	834	GJB2	E43
799	LRRK1	P 8 34	835	PAX6	P1121
800	TJP1	P390	836	EDNRB	P709
801	TIMP3	P690	837	FZD9	P15
802	ERNI	P809	838	TAL1	P817
803	MMP2	P303	839	CD4 0	P372
804	TPEF	seq 44	840	SPDEF	E116
805	CDH1	P52	841	NOS3	P38
806	SLC22A2	E271	842	FZD9	P175
807	OSM	P34	843	ESR2	E66
808	WNT8B	E487	844	HTR2A	P853
809	MST1R	E42	845	MCAM	P265
810	PTPRG	E40	846	IPF1	P750
811	FNI	E469	847	MC2R	E455
812	COL1A2	P48	848	DCC	E53
813	SEMA3C	E49	849	NEFL	P209
814	UGT1A7	P751	850	NTRK2	P395
815	SERPINE1	E189	851	DSP	P440
816	IL17RB	P788	852	SERPINB5	P19
817	MAPK14	P327	853	MAD2L1	E93
818	GJB2	P931	854	CD40	E58
819	NFKB1	P496	855	TFF2	P178
820	CDKN2B	E220	856	EPHA3	E156
821	GNG7	P903	857	FRK	P36
822	DIRAS3	E55	858	LTB4R	P163

^a Based on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
859	EPHA2	P340	895	H19	P1411
860	FGFR3	P1152	896	EVII	E47
861	GP1BB	E23	897	PTCH2	P37
862	HRASLS	P353	898	SYK	E372
863	LTB4R	E64	899	ZP3	P220
864	MET	E333	900	EGF	P242
865	RUNX3	P247	901	LTA	P214
866	TFF2	P557	902	TCF4	P317
867	TNC	P198	903	CSF1R	P73
868	GUCY2D	P48	904	COL1A2	P407
869	ALOX12	P223	905	JAK3	E64
870	UGT1A1	E 11	906	GAS7	P622
8 71	TFF1	P180	907	EDNRB	P148
872	DSC2	P407	908	SNCG	P53
873	CFTR	P372	909	FLT1	P615
874	NTRK3	P752	910	INS	P248
875	TFAP2C	E260	911	GML	E144
876	NPY	E31	912	SCGB3A1	E55
877	APOA1	P75	913	APOC2	P377
878	CYP2E1	P416	914	HTR1B	E232
879	SNURF	E256	915	MYBL2	P354
880	NGFR	E328	916	EPHA3	P106
881	GPATC3	P410	917	FGF8	E183
882	NOTCH1	E452	918	SFRP1	P157
883	ERBB3	E331	919	GNAS	E58
884	NOTCH4	E4	920	DBC1	P351
885	MLLT6	P957	921	NPR2	P1093
886	NGFR	P355	922	MKRN3	E144
887	ZP3	E90	923	WT1	E32
888	APBA2	P227	924	TMPRSS4	P552
889	IFNGR2	P377	925	CHGA	P243
890	ISL1	P379	926	HS3ST2	P546
891	SGCE	E149	927	RIPK4	E166
892	ISL1	P554	928	EPHA1	E46
893	GABRB3	E42	929	NTRK2	P10
894	FLT1	E444	930	SNURF	P2

^aBased on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Rank ^a	GENE	CpG ^b
931	DSG1	P159
932	CHGA	E52
933	FGF1	P357
934	HLA-DRA	P132
935	PROK2	P390
936	CCNC	P132
937	PARP1	P610
938	HOXA5	E1 87
939	DBC1	E204
940	EPO	E244
941	GSTM1	P266
942	SLIT2	P208
943	RASSFI	P244
944	ZNFN1A1	P179
945	TK1	P62
946	IL6	P213
947	ESR1	P151
948	MOS	P27
949	GNG7	E310
950	PPARG	P693
951	NID1	P677
952	ROR1	P6
953	GSTM2	P109
954	BMPR1A	E88
955	BCR	P346
956	NEFL	E23
9 57	LRRC32	P865
958	FANCA	P1006
959	TRIP6	P1274
960	PLXDC2	E337
961	PRDM2	P1340
962	IL13	E75
963	USP29	E274
964	TDG	E129
965	IGFBP2	P306
966	TMEFF2	E 94

Rank ^a	GENE	CpG ^b
967	SPP1	P647
968	PSCA	E359
969	COLIA2	E299

^aBased on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Table S2. Loci with	significantly different	methylation b	v asbestos burd	en in MPM
				-

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
1	CASP10	E139	31	CDKN1C	P626
2	TDGF1	P428	32	EPM2A	P64
3	DES	E228	33	VAMP8	P114
4	BSG	P211	34	HOXB2	P99
5	GP1BB	P278	35	РАХб	P1121
6	FZD9	E458	36	PYCARD	P150
7	SHB	P691	37	SLC5A8	P38
8	ASCL2	P609	38	ASCL2	E76
9	PAX6	P50	39	ABL1	P53
10	GP1BB	E23	40	CD81	P272
11	IGF2AS	E4	41	PAX6	E129
12	CD40	P372	42	TAL1	P594
13	ALOX12	E85	43	NOS3	P38
14	ASCL2	P360	44	SLC5A8	E60
15	ALOX12	P223	45	SOX17	P303
16	ID1	P659	46	DIO3	E230
17	HOXA9	E252	47	TNFSF10	P2
18	DLC1	E276	48	HOXA11	E35
19	PTPN6	P282	49	ZIM2	P22
20	IRF5	E101	50	AATK	P709
21	AATK	P519	51	SEMA3F	P692
22	VAMP8	E7	52	HS3ST2	E145
23	EPO	E244	53	MYBL2	P354
24	CHGA	E52	54	CYP1B1	E83
25	PENK	E26	55	LMO2	E148
26	TAL1	E122	56	E2F3	P840
27	JAK3	E64	57	CDKN2A	E121
28	IGF2AS	P203	58	SOX17	P287
29	TAL1	P817	59	SOX1	P1018
30	HOXA11	P698	60	SCGB3A1	E55

Increased methylation is associated with:

Increased asbestos burden, Decreased asbestos burden

^a Based on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Rank ^a	GENE	CpG ^b	Rank ^a	GENE	CpG ^b
61	MYLK	E132	94	ZNF215	P129
62	SFTPB	P689	95	PARP1	P610
63	ASCL1	P747	96	IGF2	P1036
64	MEST	P4	97	CRIP1	P874
65	IRAK3	P185	98	ETS2	P684
66	MT1A	E13	99	NPY	P295
67	CCL3	E53	100	HLA-DPB1	E2
68	ZNFN1A1	E102	101	TNFSF10	E53
69	CD81	P211	102	IRF5	P123
70	CSK	P740	103	IGFBP7	P297
71	MAPK12	E165	104	TFF1	P180
72	LIMK1	P709	105	GUCY2D	E419
73	CDKN2B	E220	106	TNFRSF10C	E109
74	TIMP3	P690	107	FZD9	P175
75	MMP9	P189	108	CASP2	P192
76	TSP50	P137	109	ASB4	P52
77	CHI3L2	P226	110	MT1A	P49
78	MBD2	P233			
79	THY1	P20			
80	ACVR1	E328			
81	EPO	P162			
82	APOC1	P406			
83	MYBL2	P211			
84	MSH3	E3			
85	CD40	E58			
86	JAK3	P156			
87	EPHB6	P827			
88	CASP10	P186			
89	TYRO3	P366			
90	ZIM2	E110			
91	RASSF1	E116			
92	EFNB3	E17			
93	MYH11	P236			

^aBased on Q- value ^b Relative to transcription start site, E - exon, P - promoter

Chapter 5

Discussion and directions

For over one hundred years, exposure to asbestos has been a known health hazard, and in this time significant progress has been made toward understanding the relationship between asbestos exposure and pleural mesothelioma. Nonetheless, further clarification of the associations among asbestos burden, somatic alterations, and patient survival in the context of this rapidly fatal malignancy remain necessary and have the potential to improve prevention, treatment and patient outcomes. In 1900, Dr. H. Montague Murray of Charing Cross Hospital in London performed an autopsy on the last living member of a group of workers in an asbestos textile factory and concluded the 33-year-old, 14 year-long employee of the factory died due to his occupational exposure to asbestos (Tweedale and Hansen 1998). The first case of malignant pleural mesothelioma (MPM) documented in the modern medical literature was published in 1931; and in 1960 the link between asbestos exposure and MPM was confirmed (Klemperer P 1931; Wagner, Sleggs et al. 1960). In the time since, there has been an ongoing effort to understand the molecular mechanisms by which this fibrous mineral carcinogen contributes to the development of this otherwise extremely rare malignancy. Although significant advances have been made in establishing asbestos as a carcinogen and characterizing many of its pathogenic mechanisms, the devastating outcome for patients with the disease is little changed, and most patients do not survive more than a year following diagnosis.

Asbestos is a group of crystalline-hydrated silicate minerals that occur in a naturally fibrous form, and is the single most important risk factor for MPM, with 70-80% of MPM patients reporting a known exposure to asbestos (Tammilehto, Maasilta et al. 1992). Derived from the Greek word for inextinguishable, asbestos was used centuries ago as a textile for clothing and in oil lamp wicks (Cugell and Kamp 2004). Inhalation of asbestos fibers leads to deposition at alveolar duct bifurcations and eventual migration to the pleural membranes (Brody,

Hill et al. 1981; Viallat, Raybuad et al. 1986). There are two main groups of asbestos fibers; serpentine asbestos, also known as chrysotile, is comprised of shorter, curved fibers; and amphiboles, which are long and straight and have several forms such as crocidolite, amosite, anthophylite, tremolite, and actinolite. Each type of asbestos has a specific mineralogy, and these fibers often undergo treatment in mining and processing that can further alter their physical chemistry (Mossman, Kamp et al. 1996). In 1981, Stanton et al. presented compelling evidence from extensive experiments in rats that argued a more important feature of asbestos fiber carcinogencity is size, rather than chemisty (Stanton, Layard et al. 1981). More specifically, the inability of fibers with large length: width ratios (amphiboles) to be cleared by phagocytic immune cells was associated with increased pathogenicity compared to fibers with small aspect ratios (chrysotile) (Stanton, Layard et al. 1981). Other labs have presented additional evidence that amphibole asbestos fibers have increased pathogenic potential for pleural mesothelioma, and the biopersistence of these fibers are generally considered an important aspect of their pathogenic potential relative to shorter fiber types (Moalli, MacDonald et al. 1987; Goodglick and Kane 1990). However, it is critical to note that no form of asbestos is free from disease risk (Dodson, Atkinson et al. 2003; Suzuki, Yuen et al. 2005), and concomitant exposure to multiple fiber types is common (Butnor, Sporn et al. 2003).

An unusual and important feature of this research, compared with essentially all prior work of this type, is the use of a quantitative asbestos burden assessment for most patients. Asbestos burden was quantified by digesting lung tissue from multiple sites per patient and counting asbestos bodies with light microscopy in the laboratory of participating pathologist Dr. John Godleski, according to the procedures described in (Churg and Warnock 1977; De Vuyst, Karjalainen et al. 1998). Ferruginous asbestos bodies-asbestos fibers with iron

mucopolysaccharide deposits-are formed through the long-term interaction of asbestos fibers with iron:protein complexes in macrophages that attempt to engulf and clear these fibers from the lung and airways. Quantifying asbestos bodies is a powerful method to estimate past exposure to asbestos and their presence in the lung is considered a hallmark of asbestos exposure (Craighead, Abraham et al. 1982). At the same time, there are important considerations when interpreting asbestos body count data in any given asbestos exposed group. Amphibole asbestos fibers with larger length: width ratios are known to form asbestos bodies more readily than shorter fibers such as chrysotile (Churg and Warnock 1980), and there is believed to be interindividual variation in asbestos body formation (Dodson, Williams et al. 1985). Nonetheless, unlike chrysotile asbestos fibers which are easier for the body to clear (for example, they can undergo transverse breakage, becoming more amenable to macrophage mediated removal from the parenchyma and airways), amphibole fibers are biopersistent. Therefore, asbestos body counts may bias exposure estimates toward amphiboles, but this may also represent a more biologically relevant dose when one is considering the action of asbestos fibers in inducing MPM.

For this thesis, using a quantitative assessment of asbestos burden, a more precise understanding the relationship between asbestos exposure and patient survival in MPM was sought. Further characterizing the epigenetic aberrations in these tumors and their relationships with asbestos exposure is critical to understanding disease pathogenesis; this project was designed specifically to determine whether asbestos exposure contributes to aberrant epigenetic events in MPM. The ability of epigenetic alterations to differentiate diseased and non-diseased pleura was assessed utilizing non-tumor pleural tissues, and the investigation of epigenetic alterations included over one thousand loci. In addition, the relationships among asbestos

exposure, epigenetic alterations, and patient survival were also examined. Integrating these analyses will hopefully result in clinically applicable tools for improving disease diagnosis and prognosis that benefit patient outcomes.

In Chapter 2, an incident case series of MPM patients enrolled through the international mesothelioma program (IMP) at Brigham and Women's Hospital in Boston, Massachusetts forms the base population for the research. Over 125 consecutive patients who underwent surgical resection for the disease were enrolled and most had detailed demographic and exposure histories, making this a relatively large and well-annotated group of MPM patients. As this study group was selected based upon patients most likely to benefit from surgery, it has an inherent bias toward younger patients with non-sarcomatoid tumors; however, it closely resembles other MPM surgical cohorts (Pass, Wali et al. 2008). Among all patients, those with non-epithelioid histologies had significantly poorer survival than those with epithelioid tumors, consistent with the findings of others (Flores, Zakowski et al. 2007; Flores, Pass et al. 2008). In addition, and again consistent with the findings of Flores et al., males in this study did not survive as long as females. Exposure to asbestos generally occurs in an occupational setting, placing a higher asbestos burden on men, resulting in 3-5 times as many men with MPM (Robinson and Lake 2005). Our study group had a similar ratio of males to females, and in addition, men were found to have significantly higher asbestos burden than women. This may, in addition, suggest that asbestos burden independently contributes to poor survival. When this potential association was examined, individuals in the lowest and highest asbestos burden tertiles were found to have significantly increased risk of death compared to patients with moderate asbestos burden. While this pattern of dose-response was not expected, it suggests a potential susceptibility to the carcinogenic effects of asbestos may exist among these patients.

Pleural mesothelioma can occur in the context of very low-level asbestos exposure, and there is evidence from several studies that genetics may modify susceptibility to MPM (Hansen, de Klerk et al. 1998; Hodgson and Darnton 2000). Substitution of a single base in the genome with a minor allele frequency of 1% or greater (polymorphisms) are the most common type of genetic variation, and known to number over 10 million in humans, with perhaps 5 million loci occurring in over 10% of the population (Risch 2000; Lander, Linton et al. 2001; Venter, Adams et al. 2001; Botstein and Risch 2003; Erichsen and Chanock 2004). Specific variations have the potential to modify disease risk, including risk of MPM. For instance an increased risk among asbestos workers with GSTM1 homozygous deletion or with the slow acetylator phenotype in NAT2 have been reported (Hirvonen, Pelin et al. 1995). In a more recent study, individuals with GSTM1 homozygous deletion were found to have a significant, 1.7 fold increased risk of MPM (95% CI, 1.04 – 2.74) (Landi, Gemignani et al. 2007). Further, DNA repair gene sequence variations may predispose individuals to an increased risk for MPM; XRCC1-399Q genotype (OR = 2.1, 95% CI, 1.1 - 4.3), XRCC3-241T genotype (OR = 4.1, 95% CI, 1.3 - 13.2) (Dianzani, Gibello et al. 2006). Additionally, a study of over 500 individuals in two Turkish villages that spanned six generations suggested an autosomal dominant transmission of MPM risk (Roushdy-Hammady, Siegel et al. 2001). Based on blood-line segregation of MPM cases in erioniteexposed populations in Turkey, and numerous reports of familial MPM in the U.S. and Europe the potential for genetics to modify the susceptibility to MPM is high, further supporting the hypothesis that there may be individuals with a high susceptibility to asbestos (Risberg, Nickels et al. 1980; Martensson, Larsson et al. 1984; Lynch, Katz et al. 1985; Hammar, Bockus et al. 1989; Otte, Sigsgaard et al. 1990; Precerutti, Mayorga et al. 1990; Dawson, Gibbs et al. 1992; Ascoli, Scalzo et al. 1998; Musti, Cavone et al. 2002; Bianchi, Brollo et al. 2004; Picklesimer,

Zanagnolo et al. 2005; Dogan, Baris et al. 2006; Ohar, Ampleford et al. 2007; Ugolini, Neri et al. 2007). In fact, most of the patients in our study who were in the low asbestos burden tertile had asbestos body counts similar to those seen in the general population (Churg and Warnock 1977).

An additional explanation for the unusual dose-response that we observed is that there are individuals in the low asbestos burden tertile that do not form ferruginous deposits after exposure to asbestos fibers that persist in the lung. Evidence for this possibility has been described in an analysis of mesotheliomas associated with low asbestos burdens. Among 18 cases with asbestos body counts in the range of those from the general population, approximately one-third of these patients had fiber burdens (as measured by electron microscopy) that exceeded levels seen in the general population (Srebro, Roggli et al. 1995). If a similar portion of our cases with low asbestos body counts follow this pattern it suggests that their asbestos burden may be higher than estimated by counting asbestos bodies. Nonetheless, while these cases imply that there is an even stronger link between increased asbestos burden and poor survival in MPM, it is likely that most patients in the low asbestos burden tertile would form asbestos burden tertile have disease that truly occurred in the context of low asbestos exposure, suggesting that they harbor a susceptibility to the carcinogenic effects of asbestos.

Examining epigenetic inactivation of tumor suppressor genes in pleural mesothelioma and the potential contribution of asbestos burden to theses alterations was the focus of Chapter 3. We found that having an increased number of methylated cell cycle control related genes was associated with increasing asbestos body counts among pleural mesothelioma patients after controlling for potential confounders. Part of a larger, pathway-based approach to tumor suppressor gene (TSG) methylation, this chapter presents evidence that induction of methylation

is associated with asbestos exposure, a crucial, novel mechanism of asbestos carcinogenicity. However, it is not clear that the asbestos fibers themselves are a direct cause of these alterations; interaction between asbestos fibers and the epigenetic regulatory machinery is not implied, and it is therefore important to more carefully consider the basis for the observed association. Asbestos exposure is associated with chronic inflammation, as well as a dose-dependent death and regrowth of mesothelial cells in areas of fiber deposition (Adamson, Bakowska et al. 1993; Sabo-Attwood, Ramos-Nino et al. 2005). Chronic inflammation has been associated with an increased prevalence of epigenetic TSG silencing in colon cancer, and is thought to be a generalizable phenomenon (Issa, Ahuja et al. 2001; Issa 2008). More specifically, the combination of direct asbestos-induced cell injury or death, and inflammation-associated reactive oxygen species over the decades-long latency of MPM would allow ample time for the selection of clones capable of continued proliferation. It is likely that dynamic carcinogen exposure and its relationship to the targeting and induction of specific epigenetic alterations in highly complex, and future work is necessary to determine the relationship between asbestos burden and phenotypically selected epigenetic pathway inactivation events.

The final chapter of research comprising this thesis introduced additional samples to the surgical cohort and included several non-tumorigenic pleural tissue samples. To combine and expand the exploration of the relationships between asbestos burden and survival, as well as that between asbestos burden and epigenetic alterations, an array-based technique to simultaneously interrogate hundreds of cancer-related genes for methylation alterations was used. In this manner, epigenetic profiles were found to be highly significant predictors of disease status. Further, epigenetic profiles were also associated with asbestos burden, and finally, both asbestos burden and epigenetic profile class membership were significant, independent predictors of

survival in pleural mesothelioma. These findings both confirmed and extended the results from previous chapters, and reveal the potential clinical utility of epigenetic biomarkers of disease to assist in diagnosis and prognosis of pleural mesothelioma.

Using an unsupervised clustering technique and locus-by-locus analysis, overall methylation profiles were highly predictive of disease status. However, hundreds of CpG loci had significantly altered methylation in tumor versus non-tumor pleura, making it difficult to determine which, and how many loci are necessary to differentiate tumors from non-tumor pleura with optimal sensitivity and specificity. Evidence for the necessity of using a large number of loci comes from our model, where it is clear that the number and identity of loci with alterations versus normal pleura will vary from tumor to tumor. To better estimate the optimal number of loci for correctly differentiating tumor from non-diseased tissue, a plot of the error in differentiating sample types versus the number of loci used to estimate the error (ranked by highest variance between sample types) was generated. To this end, the error in ability to differentiate MPM from normal pleura was as low as 2% when using between 400 and 550 loci. While these results need to be verified in an additional set of samples, there is promise for use of this method in a clinical setting to assist in the differential diagnosis of pleural mesothelioma.

In an analysis of tumor samples, asbestos burden was significantly predictive of methylation class membership, previously reported loci with differential methylation based on asbestos burden were confirmed, and these findings were extended to include several additional loci. As previously discussed, it is a distinct possibility that asbestos-induced inflammation may contribute to the selection of clones with epigenetic alterations that favor their ability to persist. Chronic inflammation is one of the most well documented tissue responses to asbestos exposure (Sabo-Attwood, Ramos-Nino et al. 2005), and again, Issa et al. have presented evidence of

chronic inflammation induced hypermethylation (Issa, Ahuja et al. 2001; Issa 2008). As inflammation is known to be associated with the production of reactive oxygen species, there is additional evidence for the relationship between inflammation and epigenetic regulation. Normal cellular histone 3 lysine demethylation by lysine demethylase (LSD1) results in reactive-oxygen-species that generate 8-oxo-guanine lesions leading to the recruitment of 8-oxoguanine-DNA glycosylase and topoisomerase IIβ. Recruitment of these DNA repair enzymes was shown to be necessary for chromatin-conformation changes that allowed estrogen-induced gene transcription to occur (Perillo, Ombra et al. 2008). In this manner then, inflammation-induced aberrant reactive oxygen DNA damage may result in improper activation of gene transcription related to DNA repair activity, one possible mechanism of inflammation-related epigenetic deregulation. However, epigenetic alterations are not the only somatic changes in these tumors. Asbestos is also known to induce chromosome damage, and numerous gene deletion events have been described in MPMs (Bjorkqvist, Tammilehto et al. 1997; Murthy and Testa 1999).

Characterizing the dose-response between asbestos burden and gene copy number alterations would allow investigation of the potential association between asbestos burden and copy number alterations. Further, combining copy number alteration data with the data presented here would allow investigation into whether the extent of copy number alterations is related to the extent of epigenetic alterations, or modifies the association between asbestos burden and methylation profile class membership. Since some tumors appear more epigenetically similar to non-tumor pleura, it is reasonable to suggest that these tumors may harbor a significant number of other somatic alterations such as gene deletions. In an effort to begin understanding these potential relationships, copy number alteration data for a subset of the incident cases studied here are now available, and preliminary research into this question has commenced. Following an

analysis of potential associations between copy number alteration and demographic, exposure and tumor characteristics; using an index of copy number alteration together with an index of epigenetic alteration, relationships among these indices and asbestos burden can begin to be investigated.

In addition to the TSG methylation events researched here, the original link between aberrant methylation events in cancer was made in a description of global hypomethylation (Feinberg and Vogelstein 1983). The result of loss of methylation in repeat elements of the genome, global methylation contributes to increased genomic instability (Feinberg and Vogelstein 1983; Yoder, Walsh et al. 1997). The extent to which hypermethylation profile class membership may be associated with global hypomethylation is not known. Nonetheless, it is likely that the same epigenetic deregulation that contributes to aberrant promoter CpG hypermethylation also contributes to global hypomethylation, and that hypomethylation may also be related to carcinogen exposures. In fact, evidence for an association between smoking and hypomethylation at the repeat element LRE1 has been described in squamous cell carcinoma of the head and neck (Hsiung, Marsit et al. 2007). A significant relationship between low dietary intake of the methyl donor folate and a variant allele of the methyl-folate reductase gene MTHFR with decreased global methylation was also described (Hsiung, Marsit et al. 2007). These findings suggest diet and genetic variation contribute to aberrant epigenetic events and may be modified by carcinogen exposure.

Constitutional genetic variation at certain loci may be associated with methylation profile class membership, and may modify the association between asbestos burden and methylation class membership. For instance, variant alleles in epigenetic regulatory genes may enhance the likelihood of selection for particular aberrant epigenetic profiles . Using available genotyping

data from epigenetic regulatory genes from approximately 40% of cases, work aimed at addressing this question has begun. Initial tests for association between genotypes and methylation profile class membership are promising, and the distribution of cases with variant alleles in certain genes may be predictive of class membership. *SIRT2* is a histone H4 deacetylase that has been reported to be down-regulated in gliomas; among MPM cases with available genotyping data, the distribution of *SIRT2* alleles approaches statistical significance as a predictor of methylation profile class membership (permutation P = 0.09), (Inoue, Hiratsuka et al. 2007). Similarly, distribution of *SIRT3* alleles across methylation profile classes also approaches statistical significance (P = 0.09). In contrast, other genes such as the DNA methyltransferase enzymes do not exhibit similar putative associations, though these data are only from a subset of cases, and genotyping needs to be completed for the entire cohort. Furthermore, additional candidate genes such as those involved in the inflammatory response, cell cycle control, apoptosis, and methyl donor group metabolism, among others, should be considered for this type of analysis.

Another somatic alteration that may be associated with epigenetic profiles or modify the association between asbestos burden and methylation profile class membership is aberrant MicroRNA (miRNA) expression. MiRNAs are single-stranded, non-coding short oligonucleotide sequences of about 22 bases that inhibit mRNA translation in plants and animals (Bartel 2004). Alterations in the expression of many miRNAs have been linked to multiple types of human cancer, and it is believed that miRNAs can function both as oncogenes and tumor suppressors. Over 50% of known miRNAs are located in chromosomal regions that are frequently altered in human cancer such as fragile sites, frequent breakpoints, and areas of amplification or deletion (Calin, Ferracin et al. 2005). Importantly, recent work has shown that certain miRNAs can be

aberrantly silenced by hypermethylation, as exemplified in cancers of the oral cavity, breast, and colon (Grady, Parkin et al. 2008; Kozaki, Imoto et al. 2008; Lehmann, Hasemeier et al. 2008). In addition, there is also evidence for hypomethylation resulting in the aberrant over-expression of miRNAs (Brueckner, Stresemann et al. 2007; Iorio, Visone et al. 2007; Lujambio, Ropero et al. 2007). An initial study of miRNA expression profiles in this case series has been completed for a subset of cases, and will soon be extended to include additional cases at specific target miRNAs. Although statistical power to detect associations is low due to small sample size, preliminary results indicate that expression of several miRNAs may be independent predictors of tumor histology. Another important experiment is to profile the miRNA expression in non-tumor pleural samples, and this approach may reveal biomarkers for differential diagnosis of pleural mesothelioma in addition to those presented in this thesis. Finally, once these initial investigations are complete, integration of the miRNA, epigenetic, and genetic copy number profiling datasets will hopefully provide a more complete picture of the true genomic context of human MPM tumors.

Although it is a source of considerable debate, there is evidence that infection with simian virus 40 (SV40) may contribute to mesothelioma risk (Barbanti-Brodano, Sabbioni et al. 2004). Between 1955 and 1963 hundreds of millions of humans in North America, Europe, Asia and Africa were exposed to SV40 virus in contaminated polio vaccines (Carbone, Rizzo et al. 1997). Reviews from (Butel and Lednicky 1999; Minor, Pipkin et al. 2003) note a seroprevalence of SV40 in the general population that ranges from 2-20%. Importantly, shedding of infectious SV40 virus is detectable in stool for at least five weeks post polio vaccination, indicating the potential for horizontal viral transmission (Melnick and Stinebaugh 1962). Whereas SV40 grows poorly in human fibroblasts, it is capable of productively infecting human

fetal tissues, newborn kidney cells and mesothelial cells without cell killing (Shein and Enders 1962; O'Neill and Carroll 1981; O'Neill, Xu et al. 1990; Vilchez and Butel 2004). SV40 encodes large T-antigen, a protein that facilitates viral transformation by binding and inactivating the tumor suppressor p53 and the Rb family of TSGs (Bargonetti, Reynisdottir et al. 1992; Ahuja, Saenz-Robles et al. 2005). A review that conducted meta-analysis of SV40 infection in human cancer reported that 262/528 (50%) cases of MPM had SV40 infection, compared to 26/468 (6%) controls, a significant OR of 16.8 (Vilchez and Butel 2004). Strengthening this evidence of a role for SV40 in MPM, a more recent report found the same prevalence of SV40 positive tumors (49%) in their case series of 63 tumors (Suzuki, Toyooka et al. 2005). These authors also examined methylation at 12 TSGs in these tumors and found a higher prevalence of methylation among SV40 positive tumors at all 12 TSGs, suggesting a potential association between SV40 infection and TSG hypermethylation in MPM. However, many contend that the widespread use of plasmids containing portions of the virus has led to the contamination of PCR reactions designed to detect viral sequences in cancers. In an effort to determine whether SV40 infection is more prevalent among MPM cases; investigate its potential association with asbestos burden; and determine if viral infection is associated with methylation class profiles; we have developed a novel method for SV40 detection. Putative viral miRNAs have been described in the SV40 genome and are thought to assist the virus in immune evasion by down-regulating expression of large T-antigen (Sullivan, Grundhoff et al. 2005). Stem-loop RT-PCR assays aimed at detecting mature SV40 miRNAs have been designed, and are a promising approach for determination of SV40 infection in pleural mesothelioma.

The research and analytic methods presented here, and the discussed directions have the potential to be applied in studies of other exposure-related human cancers. Certainly, the

relationships among constitutional genetics, somatic alterations, carcinogen exposure, and patient outcome in human cancer are incredibly complex. As such, it is not surprising that there are currently several challenges to the integrative genomics approaches alluded to above; software and analysis tools to integrate and analyze data from multiple array-based platforms are lacking. In addition, one cannot ignore the substantial expertise and funds necessary for experiments of this scale and complexity. It is of paramount importance that well designed epidemiologic studies are the basis of these investigations such that there is ample genetic material and annotation of demographic, exposure and tumor characteristics for such comprehensive study. Despite these challenges, disentangling these dynamic and complex interactions holds incredible potential for appraising the pathogenic mechanisms of this and other cancers, as well as for translating into effective prevention, screening, diagnostic, and treatment strategies that may dramatically improve patient quality of life and survival.

Surprisingly, asbestos has not been completely banned in the United States, and serious, high-level exposures persist in many nations that continue to import and utilize asbestos (Joshi and Gupta 2004; Kazan-Allen 2005). Despite a partial ban on asbestos in the U.S. there are still approximately one thousand asbestos citations issued by the occupational health and safety administration annually (Castleman 2001). Further, some provisions of the original measures to reduce asbestos use had loopholes that allowed products such as spray-on fireproofing to be sold and marketed as "asbestos free" as long as the asbestos content was less than 1% for years after the EPA ban on these products (Castleman 2001). Surprisingly, in 2000, over two hundred metric tons of asbestos-laden clothing, yarn and other textile products were imported to the U.S., along with over 50,000 metric tons of asbestos-cement products (Castleman 2001). Leading nations of occupational health and safety regulations in Europe banned asbestos before the turn

of the century, and the European Union had a deadline for all its aspiring member nations to ban asbestos by 2005 (Castleman 2001). However, the asbestos industry has effectively managed to work around these bans, simply exporting asbestos to poorer nations. Import and use of asbestos remains high in developing countries like India, China, and Central American nations. Combined with the fact that asbestos-containing products are still imported, and other exposure sources still exist in the U.S., pleural mesothelioma and other asbestos-related diseases are sure to continue presenting in patients for the foreseeable future; arguing for advancing the understanding of how exposure contributes to disease. As of spring 2008, there is a renewed push to ban asbestos in the United States in the form of the "Ban Asbestos in America Act" which has passed the U.S. Senate and awaits consideration by the House of Representatives.

In summary, these results presented herein have contributed to the understanding of the relationships among asbestos burden, epigenetic alterations, and patient survival in pleural mesothelioma. It is important to reiterate the clinical implications of these findings as they may truly serve to improve diagnostic procedures and translate to increased quality of life and survival for patients with this devastating disease.

References

- Adamson, I. Y., J. Bakowska, et al. (1993). "Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung." <u>Am J Pathol</u> 142(4): 1209-16.
- Ahuja, D., M. T. Saenz-Robles, et al. (2005). "SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation." <u>Oncogene</u> **24**(52): 7729-45.
- Ascoli, V., C. C. Scalzo, et al. (1998). "Familial pleural malignant mesothelioma: clustering in three sisters and one cousin." <u>Cancer Lett</u> **130**(1-2): 203-7.
- Barbanti-Brodano, G., S. Sabbioni, et al. (2004). "Simian virus 40 infection in humans and association with human diseases: results and hypotheses." <u>Virology</u> **318**(1): 1-9.
- Bargonetti, J., I. Reynisdottir, et al. (1992). "Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53." <u>Genes Dev</u> 6(10): 1886-98.
- Bartel, D. P. (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function." <u>Cell</u> **116**(2): 281-97.
- Bianchi, C., A. Brollo, et al. (2004). "Familial mesothelioma of the pleura--a report of 40 cases." <u>Ind Health</u> 42(2): 235-9.
- Bjorkqvist, A. M., L. Tammilehto, et al. (1997). "Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma." <u>Br J Cancer</u> 75(4): 523-7.
- Botstein, D. and N. Risch (2003). "Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease." <u>Nat Genet</u> 33 Suppl: 228-37.
- Brody, A. R., L. H. Hill, et al. (1981). "Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages." <u>Am Rev Respir Dis</u> 123(6): 670-9.
- Brueckner, B., C. Stresemann, et al. (2007). "The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function." <u>Cancer Res</u> **67**(4): 1419-23.
- Butel, J. S. and J. A. Lednicky (1999). "Cell and molecular biology of simian virus 40: implications for human infections and disease." J Natl Cancer Inst 91(2): 119-34.
- Butnor, K. J., T. A. Sporn, et al. (2003). "Exposure to brake dust and malignant mesothelioma: a study of 10 cases with mineral fiber analyses." <u>Ann Occup Hyg</u> 47(4): 325-30.
- Calin, G. A., M. Ferracin, et al. (2005). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia." <u>N Engl J Med</u> **353**(17): 1793-801.

Carbone, M., P. Rizzo, et al. (1997). "Simian virus 40, poliovaccines and human tumors: a review of recent developments." <u>Oncogene</u> 15(16): 1877-88.

Castleman, B. (2001). "United States Senate Hearing - Asbestos."

- Churg, A. and M. L. Warnock (1977). "Analysis of the cores of ferruginous (asbestos) bodies from the general population. I. Patients with and without lung cancer." <u>Lab Invest</u> 37(3): 280-6.
- Churg, A. and M. L. Warnock (1977). "Correlation of quantitative asbestos body counts and occupation in urban patients." <u>Arch Pathol Lab Med</u> **101**(12): 629-34.
- Churg, A. and M. L. Warnock (1980). "Asbestos fibers in the general population." <u>Am Rev</u> <u>Respir Dis</u> 122(5): 669-78.
- Craighead, J. E., J. L. Abraham, et al. (1982). "The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health." <u>Arch Pathol Lab Med</u> **106**(11): 544-96.
- Cugell, D. W. and D. W. Kamp (2004). "Asbestos and the pleura: a review." <u>Chest</u> **125**(3): 1103-17.
- Dawson, A., A. Gibbs, et al. (1992). "Familial mesothelioma. Details of 17 cases with histopathologic findings and mineral analysis." <u>Cancer</u> **70**(5): 1183-7.
- De Vuyst, P., A. Karjalainen, et al. (1998). "1998 ERS Task Force Report Guidelines for mineral fibre analyses in biological samples: report of the ERS working group." <u>Eur Respir J</u> 11: 1416-1426.
- Dianzani, I., L. Gibello, et al. (2006). "Polymorphisms in DNA repair genes as risk factors for asbestos-related malignant mesothelioma in a general population study." <u>Mutat Res</u>.
- Dodson, R. F., M. A. Atkinson, et al. (2003). "Asbestos fiber length as related to potential pathogenicity: a critical review." <u>Am J Ind Med</u> 44(3): 291-7.
- Dodson, R. F., M. G. Williams, Jr., et al. (1985). "A comparison of the ferruginous body and uncoated fiber content in the lungs of former asbestos workers." <u>Am Rev Respir Dis</u> 132(1): 143-7.
- Dogan, A. U., Y. I. Baris, et al. (2006). "Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey." <u>Cancer Res</u> 66(10): 5063-8.
- Erichsen, H. C. and S. J. Chanock (2004). "SNPs in cancer research and treatment." <u>Br J Cancer</u> **90**(4): 747-51.
- Feinberg, A. P. and B. Vogelstein (1983). "Hypomethylation distinguishes genes of some human cancers from their normal counterparts." <u>Nature</u> **301**(5895): 89-92.

- Flores, R. M., H. I. Pass, et al. (2008). "Extrapleural pneumonectomy versus pleurectomy/decortication in the surgical management of malignant pleural mesothelioma: results in 663 patients." <u>J Thorac Cardiovasc Surg</u> 135(3): 620-6, 626 e1-3.
- Flores, R. M., M. Zakowski, et al. (2007). "Prognostic factors in the treatment of malignant pleural mesothelioma at a large tertiary referral center." J Thorac Oncol 2(10): 957-65.
- Goodglick, L. A. and A. B. Kane (1990). "Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo." <u>Cancer Res</u> **50**(16): 5153-63.
- Grady, W. M., R. K. Parkin, et al. (2008). "Epigenetic silencing of the intronic microRNA hsamiR-342 and its host gene EVL in colorectal cancer." <u>Oncogene</u>.
- Hammar, S. P., D. Bockus, et al. (1989). "Familial mesothelioma: a report of two families." <u>Hum</u> <u>Pathol</u> 20(2): 107-12.
- Hansen, J., N. H. de Klerk, et al. (1998). "Environmental exposure to crocidolite and mesothelioma: exposure-response relationships." <u>Am J Respir Crit Care Med</u> 157(1): 69-75.
- Hirvonen, A., K. Pelin, et al. (1995). "Inherited GSTM1 and NAT2 defects as concurrent risk modifiers in asbestos-related human malignant mesothelioma." <u>Cancer Res</u> 55(14): 2981-3.
- Hodgson, J. T. and A. Darnton (2000). "The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure." <u>Ann Occup Hyg</u> 44(8): 565-601.
- Hsiung, D. T., C. J. Marsit, et al. (2007). "Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma." <u>Cancer Epidemiol Biomarkers</u> <u>Prev</u> 16(1): 108-14.
- Inoue, T., M. Hiratsuka, et al. (2007). "The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation." <u>Cell Cycle</u> **6**(9): 1011-8.
- Iorio, M. V., R. Visone, et al. (2007). "MicroRNA signatures in human ovarian cancer." <u>Cancer</u> <u>Res</u> 67(18): 8699-707.
- Issa, J. P. (2008). "Cancer prevention: Epigenetics steps up to the plate." <u>Cancer Prevention</u> <u>Research</u>.
- Issa, J. P., N. Ahuja, et al. (2001). "Accelerated age-related CpG island methylation in ulcerative colitis." <u>Cancer Res</u> **61**(9): 3573-7.
- Joshi, T. K. and R. K. Gupta (2004). "Asbestos in developing countries: magnitude of risk and its practical implications." Int J Occup Med Environ Health 17(1): 179-85.

- Kazan-Allen, L. (2005). "Asbestos and mesothelioma: worldwide trends." Lung Cancer 49 Suppl 1: S3-8.
- Klemperer P, R. C. (1931). "Primary neoplasms of the pleura: a report of five cases." <u>Arch</u> <u>Pathol</u> 11: 385-412.
- Kozaki, K., I. Imoto, et al. (2008). "Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer." <u>Cancer Res</u> 68(7): 2094-105.
- Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human genome." <u>Nature</u> **409**(6822): 860-921.
- Landi, S., F. Gemignani, et al. (2007). "Polymorphisms of glutathione-S-transferase M1 and manganese superoxide dismutase are associated with the risk of malignant pleural mesothelioma." Int J Cancer 120(12): 2739-43.
- Lehmann, U., B. Hasemeier, et al. (2008). "Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer." <u>J Pathol</u> **214**(1): 17-24.
- Lujambio, A., S. Ropero, et al. (2007). "Genetic unmasking of an epigenetically silenced microRNA in human cancer cells." <u>Cancer Res</u> 67(4): 1424-9.
- Lynch, H. T., D. Katz, et al. (1985). "Familial mesothelioma: review and family study." <u>Cancer</u> <u>Genet Cytogenet</u> 15(1-2): 25-35.
- Martensson, G., S. Larsson, et al. (1984). "Malignant mesothelioma in two pairs of siblings: is there a hereditary predisposing factor?" Eur J Respir Dis 65(3): 179-84.
- Melnick, J. L. and S. Stinebaugh (1962). "Excretion of vacuolating SV-40 virus (papova virus group) after ingestion as a contaminant of oral poliovaccine." <u>Proc Soc Exp Biol Med</u> **109**: 965-8.
- Minor, P., P. Pipkin, et al. (2003). "Studies of neutralising antibodies to SV40 in human sera." J Med Virol 70(3): 490-5.
- Moalli, P. A., J. L. MacDonald, et al. (1987). "Acute injury and regeneration of the mesothelium in response to asbestos fibers." <u>Am J Pathol</u> **128**(3): 426-45.
- Mossman, B. T., D. W. Kamp, et al. (1996). "Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers." <u>Cancer Invest</u> 14(5): 466-80.
- Murthy, S. S. and J. R. Testa (1999). "Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma." J Cell Physiol 180(2): 150-7.
- Musti, M., D. Cavone, et al. (2002). "A cluster of familial malignant mesothelioma with del(9p) as the sole chromosomal anomaly." <u>Cancer Genet Cytogenet</u> **138**(1): 73-6.

- O'Neill, F. J. and D. Carroll (1981). "Amplification of papovavirus defectives during serial low multiplicity infections." <u>Virology</u> **112**(2): 800-3.
- O'Neill, F. J., X. L. Xu, et al. (1990). "Host range determinant in the late region of SV40 and RF virus affecting growth in human cells." Intervirology **31**(2-4): 175-87.
- Ohar, J. A., E. J. Ampleford, et al. (2007). "Identification of a mesothelioma phenotype." <u>Respir</u> <u>Med</u> 101(3): 503-9.
- Otte, K. E., T. I. Sigsgaard, et al. (1990). "Malignant mesothelioma: clustering in a family producing asbestos cement in their home." <u>Br J Ind Med</u> 47(1): 10-3.
- Pass, H. I., A. Wali, et al. (2008). "Soluble mesothelin-related peptide level elevation in mesothelioma serum and pleural effusions." <u>Ann Thorac Surg</u> 85(1): 265-72; discussion 272.
- Perillo, B., M. N. Ombra, et al. (2008). "DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression." <u>Science</u> **319**(5860): 202-6.
- Picklesimer, A. H., V. Zanagnolo, et al. (2005). "Case report: malignant peritoneal mesothelioma in two siblings." <u>Gynecol Oncol</u> 99(2): 512-6.
- Precerutti, J. A., M. Mayorga, et al. (1990). "Is there a "genetic model" in the genesis of malignant pleural mesothelioma?" <u>Hum Pathol</u> 21(9): 983.
- Risberg, B., J. Nickels, et al. (1980). "Familial clustering of malignant mesothelioma." <u>Cancer</u> **45**(9): 2422-7.
- Risch, N. J. (2000). "Searching for genetic determinants in the new millennium." <u>Nature</u> **405**(6788): 847-56.
- Robinson, B. W. and R. A. Lake (2005). "Advances in malignant mesothelioma." <u>N Engl J Med</u> **353**(15): 1591-603.
- Roushdy-Hammady, I., J. Siegel, et al. (2001). "Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey." Lancet **357**(9254): 444-5.
- Sabo-Attwood, T., M. Ramos-Nino, et al. (2005). "Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestos-induced fibrogenesis." <u>Am J Pathol</u> 167(5): 1243-56.
- Shein, H. M. and J. F. Enders (1962). "Multiplication and cytopathogenicity of Simian vacuolating virus 40 in cultures of human tissues." Proc Soc Exp Biol Med 109: 495-500.
- Srebro, S. H., V. L. Roggli, et al. (1995). "Malignant mesothelioma associated with low pulmonary tissue asbestos burdens: a light and scanning electron microscopic analysis of 18 cases." <u>Mod Pathol</u> 8(6): 614-21.

- Stanton, M. F., M. Layard, et al. (1981). "Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals." J Natl Cancer Inst 67(5): 965-75.
- Sullivan, C. S., A. T. Grundhoff, et al. (2005). "SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells." <u>Nature</u> **435**(7042): 682-6.
- Suzuki, M., S. Toyooka, et al. (2005). "Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection." <u>Oncogene</u> **24**(7): 1302-8.
- Suzuki, Y., S. R. Yuen, et al. (2005). "Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence." Int J Hyg Environ Health **208**(3): 201-10.
- Tammilehto, L., P. Maasilta, et al. (1992). "Diagnosis and prognostic factors in malignant pleural mesothelioma: a retrospective analysis of sixty-five patients." <u>Respiration</u> **59**(3): 129-35.
- Tweedale, G. and P. Hansen (1998). "Protecting the workers: the medical board and the asbestos industry, 1930s-1960s." Med Hist 42(4): 439-57.
- Ugolini, D., M. Neri, et al. (2007). "Genetic susceptibility to malignant mesothelioma and exposure to asbestos: The influence of the familial factor." <u>Mutat Res</u>.
- Venter, J. C., M. D. Adams, et al. (2001). "The sequence of the human genome." <u>Science</u> 291(5507): 1304-51.
- Viallat, J. R., F. Raybuad, et al. (1986). "Pleural migration of chrysotile fibers after intratracheal injection in rats." <u>Arch Environ Health</u> **41**(5): 282-6.
- Vilchez, R. A. and J. S. Butel (2004). "Emergent human pathogen simian virus 40 and its role in cancer." <u>Clin Microbiol Rev</u> 17(3): 495-508, table of contents.
- Wagner, J. C., C. A. Sleggs, et al. (1960). "Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province." <u>Br J Ind Med</u> 17: 260-71.
- Yoder, J. A., C. P. Walsh, et al. (1997). "Cytosine methylation and the ecology of intragenomic parasites." <u>Trends Genet</u> **13**(8): 335-40.